Piton Fournaise: Aufstiegswege lokalisiert

Eine neue Studie identifizierte die Oberflächen-nahen Aufstiegswege, die das Magma im Untergrund des Piton de la Fournaise nimmt, kurz bevor es zu einer Eruption kommt. Die Studie fand unter Zusammenarbeit des OVPF mit mehreren anderen Instituten statt. Unter diesen Instituten befanden sich die Universitäten von Grenoble und Yogyakarta.

Die Forscher bedienten sich GPS-Daten, die vor der Eruption im Juni 2014 gesammelt worden sind. Damals beendete der Piton Fournaise eine 41 Monate dauernde Ruhephase. Für diesen Vulkan war die Ruhephase außergewöhnlich lang, da er sonst 3-5 Mal pro Jahr eruptiert. Viele automatische GPS-Messstationen maßen die Bodendeformationen, die durch aufsteigendes Magma verursacht wurden. In einer digitalen Modellierung, wurde mit Hilfe einer Bayes’sche Inversionsmethode eine Art mechanischer Tomografie durchgeführt, die die Lage der magmatischen Gänge im Untergrund sichtbar machte. Es wurde der Magmenaufstieg bis in einer Tiefe von 7-8 km verfolgt.

Die Wissenschaftler sind die Meinung, dass mit ihrer neuen Methode künftig Vulkanausbrüche genauer prognostiziert werden könnten. Man könnte vor der Eruption die zu erwartende Lavamenge bestimmen und den wahrscheinlichsten Eruptionsort lokalisieren. Daraufhin könnten ggf. vorsorgliche Maßnahmen angeordnet werden. Dazu schreiben die Forscher: „Unsere Ergebnisse deuten auch auf Quellengeometrien hin, die mit beobachteten Eruptionsspalten und der Seismizitätsverteilung kompatibel sind. Im Falle eines endlichen Magma-Volumens, das an der endgültigen Dyke-Injektion beteiligt ist, ermöglichen die Quellvolumen-Schätzungen mit dieser Methode die Vorhersage des Volumens der eruptierten Lava.“

Meistens spielen sich die Eruptionen am Piton Fournaise im Gipfelbereich der Caldera ab, ohne dass es zu einer Gefährdung von Menschen kommt. In selteneren Fällen können sich allerdings auch Eruptionsspalten auf der Außenflanke des Vulkans öffnen und Ortschaften gefährden. So geschehen im Jahr 1977, als Lava den Ort Sante Rose erreichte und mehrere Häuser zerstört. Dabei wurde die Kirche von Lava eingeschlossen, aber nicht zerstört.
Quelle: OVPF, GRL

Taiwan installiert Frühwarnsystem

 

Taiwan will bis Ende des Jahres ein Eruptions-Frühwarnsystem einrichten, dass sich an internationale Standards orientiert. An dem Frühwarnsystem sollen Maßnahmen zur Katastrophenverhütung gekoppelt sein. Die Zuständige Behörde ist das CWB (Central Weather Bureau). Dem CWB untersteht auch die Seismologiebehörde, die Eng mit den Vulkanologen zusammenarbeitet. Mit dieser Struktur steht Taiwan nicht alleine da, denn in vielen anderen Staaten ist die Überwachung der Vulkane mit den örtlichen Meteorologiebehörden gekoppelt, so etwa in Island und Japan.

Überwacht werden sollen die beiden als aktiv eingestuften Vulkangebiete im Norden des Landes. Das sind die Vulkansysteme von Datun bei Taipeh und die Turtle Island in Yilan. Beide Vulkangebiete gelten als aktiv, wenn man die allgemein gültige Interpretation des Begriffs heranzieht, nach dem ein Vulkan als aktiv eingestuft wird, wenn er in den letzten 10.000 Jahren ausgebrochen ist.

Das Warnsystem stuft die Aktivität der Vulkane in einem 3-stufigen Ampel-System ein. Stufe „0“ ist gleich „grün“ und bedeutet keine Gefahr. Stufe „1“ wird mit „gelb“ gleichgesetzt und kommt einer Warnung vor einem möglichen Ausbruch gleich. In dieser Phase wird normalerweise eine Zunahme der Seismik registriert. Stufe „3“ entspricht dem „roten“ Alarm, wenn ein Vulkanausbruch begonnen hat, oder unmittelbar bevorsteht.

Zu den Überwachungskriterien gehören Veränderungen in der Form der Erdkruste, die Freisetzung bestimmter Gase und Veränderungen der Unterwassertemperatur, sagte das CWB in einer Pressemeldung und fügte hinzu, dass sowohl das CWB, als auch das Ministerium für Technologie und Wissenschaft Beobachtungsstationen auf dem Berg Datun haben.

Obwohl die Vulkane in Taiwan seit Tausenden von Jahren inaktiv sind, könnten sie nach einer Studie der Academia Sinica immer noch ausbrechen.

Warnungen werden über das Internet, Textnachrichten und Handy-Sendungen verbreitet, ein gezielter Nachrichtendienst, der die Menschen in bestimmten Gebieten benachrichtigt, so das CWB.

Vulkanobservatorium Deutschland?

Damit ist Deutschland eines der wenigen Länder der weiter entwickelten Welt, dass über kein Vulkanologisches Warnsystem verfügt, obwohl es auch ein als aktiv einzustufendes Vulkangebiet besitzt. Gemeint ist die Vulkaneifel. Der letzte Ausbruch fand hier vor ca. 11.000 Jahren statt, doch aufgrund einer großen Brandbreite in den Datierungen, könnte die letzte Eruption des Ulmener Maars auch erst 9500 Jahre her sein und müsste demnach gemäß Definition noch als aktiv eingestuft werden. Darüber hinaus rückt die Wissenschaft langsam von der 10.000 Jahre-Definition ab, denn es mehren sich die Hinweise darauf, dass Vulkane auch noch nach längeren Ruhephasen ausbrechen können. Tatsächlich wurden erst vor kurzem Hinweise entdeckt, dass der Magmenkörper unter der Eifel aktiv ist.

Stromboli: Vorzeichen der Paroxysmen entdeckt

Im letzten Jahr wurde die Liparische Insel Stromboli gleich von 2 großen paroxysmalen Eruptionen heimgesucht, bei denen ein Wanderer starb und mehrere Personen verletzt wurden. Zahlreiche Bootsfahrer entgingen nur knapp einer Katastrophe, als ein pyroklastischer Strom weit auf das Meer hinauslief. Die Paroxysmen ereigneten sich am 3. Juli und am 28 August 2019. Ein Team aus Wissenschaftler des INGV und IGP werteten in einer Studie sämtliche zur Verfügung stehende Beobachtungsdaten zwischen dem 15. November 2018 und 15. September 2019 aus und entdeckten dabei, dass einige Messwerte von der Norm abwichen. Diese könnten in Zukunft dazu benutzt werden Vorhersagen zu paroxysmalen Eruptionen zu treffen. Die Forscher hoffen, dass es gelingt ein Vorwarnsystem zu entwickeln. Sollte das gelingen, könnte es sein, dass der Aufstieg zum Vulkan wieder freigegeben wird, natürlich nur in Begleitung eines Bergführers, der via Funk mit dem Vulkanologischen Observatorium in Verbindung steht. Doch auch ohne besondere wissenschaftliche Forschung lässt sich sagen, dass sich vor größeren Eruptionen am Stromboli die normale Aktivität für gewöhnlich steigert. Dies geschieht über eine Periode von mehreren Tagen/Wochen. Doch gerade dann sind Neugierige besonders scharf darauf, den Gipfel des Vulkans zu stürmen. So wurde über Wochen eine Steigerung der Aktivität beobachtet, die mit einem Besucheransturm einherging. Bereits am 26. Juni gab es eine größere Explosion.

Die Forscher werteten als erstes die seismischen Signale aus und kamen zu dem Schluss, dass sich die Erdbebentätigkeit vor Veränderungen im System steigert. Sie schreiben in ihrer Arbeit dazu, dass im Allgemeinen alle seismischen Signale, die mit der Dynamik des Vulkans zusammenhängen, in den Perioden zunehmen, in denen sich die eruptive Aktivität verstärkt. Das folgende Bild zeigt vier Perioden zunehmender Seismizität entsprechend der Krise von 2014, die mit dem effusiven Ausbruch von August bis November ihren Höhepunkt erreichte, die Eruptionsphase von 2017-2018, die durch die Wiederaufnahme großer Explosionen und Lava-Emissionen gekennzeichnet ist, die Zunahme der eruptiven Aktivität in den Jahren 2018-2019, die nicht in signifikanten eruptiven Anomalien gipfelte, und schließlich die eruptive Phase des Sommers 2019, die mit dem Paroxysmus vom 3. Juli begann und sich mit der vom 28. August fortsetzte. Auffällig ist allerdings, dass sich die Tremor-Amplitude der 4. Phase erst nach den Paroxysmen änderte. Daher untersuchten die Forscher andere seismische Parameter.

Die 4 seismischen Phasen. © Springer/INGV

Das Team lenkte seine Aufmerksamkeit auf die seismischen Signale, die in direktem Zusammenhang mit der stombolianischen Aktivität stehen. Diese sogenannten VLP-Ereignisse sind Beben mit einer sehr langen Amplitude. Vor dem Paroxysmus vom 3. Juli variierte die Wellenform der VLP-Beben und es kam häufiger zu Oszillationen in Form einer größeren Wellenlänge der Signale. Die Anzahl solcher Ereignisse stieg in der Zeit vor dem 3. Juli deutlich an.

Die Infraschall-Sensoren verzeichneten am 3. Juli 3 Minuten vor dem Paroxysmus einen deutlichen Anstieg der Tremor-Amplitude. Im August ereignete sich vergleichbares 1 Minute vor der Eruption. Diese Daten ließen sich mit einer plötzlichen Dehnung korrelieren, die von einem Bohrloch-Dehnungsmesser (Extensometer) aufgezeichnet wurde. Diese Daten zeugen von einem sehr schnellen Magmenaufstieg.

Die Auswertung von Aufnahmen der Wärmebild-Kamera zeigten, dass sich gut eine halbe Stunde vor den Paroxysmen kleine Lavaströme im Krater bildeten. Als die Lavaströme auftraten, registrierte der Dehnungsmesser eine leichte Entspannung des Untergrundes. Das Geschah wenige Minuten vor dem plötzlichen Anstieg und dem finalen Magmenaufstieg.

Korrelation der Thermalbilder mit Amplitudendaten. © Springer/INGV

 

Die Arbeit bestätigt im Prinzip die bereits bekannten Vorzeichen eines Paroxysmus und korreliert sie mit den Messwerten. Auch an anderen Vulkanen nimmt die strombolianische Tätigkeit vor einem Paroxysmus zu und es beginnen kleinen Lavaströme zu fließen. Allerdings erfolgt dann nicht immer ein Paroxysmus. Generell sollten Vulkanwanderer alarmiert sein, wenn sich an einem Vulkan das Ausbruchsgeschehen ändert. Selbst leichte Variationen können einen sich anbahnenden großen Ausbruch andeuten.

(Quelle: https://www.nature.com/articles/s41598-020-67220-1)

Vulkaneifel: Neues vom Mantelplume

Die Vulkaneifel im mittleren Westen Deutschlands beherbergt ein Vulkanfeld, das von vielen Vulkanologen als aktiv eingestuft wird. Der letzte Ausbruch ereignete sich hier vor gut 10.900 Jahren und hat damit die Marke um 900 Jahre überschritten, ab der ein Vulkan als erloschen gilt. Doch neuere Studien zeigen, dass Vulkane auch nach einer viel längeren Ruheperiode wieder ausbrechen können.

Lange Zeit rätselten Vulkanologen darüber, wie der Vulkanismus der Eifel zustande kam. 2 Theorien wurden aufgestellt: Die Vulkane befinden sich auf der Schulter einer divergenten Störungszone. Dieses Rift wird durch den Verlauf des Flusses Rhein markiert. Der Vulkanismus könnte also tektonisch bedingt sein. Doch häufig entstehen Vulkane inmitten einer Kontinentalplatte durch Mantelplume, die auch gerne als Hotspots bezeichnet werden. So ein Hotspot wurde auch für die Eifel postuliert und mittels seismischer Tomografie nachgewiesen. Doch damit wusste man noch nicht, ob dieser Hotspot tatsächlich noch aktiv ist. Nun hat eine neue Studie gezeigt, dass sich der Boden im Bereich der Vulkaneifel anhebt und die Hebung ein viel größeres Gebiet umfasst, als man bisher vermutet hätte. Nicht nur das Gebiet um die beiden Vulkanfelder der Eifel wird angehoben, sondern noch ein Stück des Rheinischen Schiefergebirges.

Ein Wissenschaftsteam um Corné Kreemer von der Universität in Nevada, untersuchte Millionen GPS-Daten Europas, die innerhalb von 20 Jahren gesammelt wurden, um etwaige Bodendeformationen auf die Spur zu kommen. Tatsächlich entdeckten die Forscher im Bereich der Eifel nicht nur eine vertikale Bodenanhebung, sondern auch eine Zone horizontaler Dehnung, die von einem radialen Muster der Verkürzung umgeben ist. Dieses Gebiet ist deutlich größer als die Vulkaneifel. Korrigiert man die Hebungsraten des Bodens um den Wert des isostatischen Anstiegs, der immer noch durch die Eisschmelze der letzten Eiszeit verursacht wird, so kommt man auf eine Hebungsrate von etwa 1 mm pro Jahr. Die Wissenschaftler bezeichnen die Hebungsrate als bemerkenswert und gehen davon aus, dass sie von den Auftriebskräften des Mantelplumes verursacht werden. Solche Auftriebskräfte in einem Gesteinskörper kann es nur geben, wenn die Gesteine weniger dicht als das umgebende Gestein ist, was bei einem Plume der Fall ist, wenn zumindest ein Teil des Gesteins als Schmelze vorliegt. Diese Schlussfolgerungen legen nahe, dass die Vulkane der Eifel eines Tages wieder aktiv werden könnten. Allerdings gibt es keine Anzeichen für einen unmittelbar bevorstehenden Vulkanausbruch.

(Quelle: https://doi.org/10.1093/gji/ggaa227)

Ol Doinyo Lengai und das Riftvalley

Der Ol Doinyo Lenagi liegt im Herzen des Ostafrikanischen Riftvalleys und ist der Gottberg der Massai in Tansania. Das Hirtenvolk glaubt, dass im Krater des Vulkans der Gott L’Engai wohnt, dem zu Ehren in Zeiten der Not Opfer dargebracht werden. Notzeiten werden im Ostafrikanischen Riftvalley häufig durch Dürren ausgelöst, wenn weder Vieh, noch Mensch genug zum Trinken und Essen fanden. Doch seit 2018 kann von Dürre keine Rede sein, denn es regnete monatelang. Seit einigen Tagen wird es trockener und die Satelliten können wieder einen Blick auf das Land der Massai werfen: das Weideland ist Grün und die Becken der Soadaseen sind randvoll mit Wasser gefüllt. Allerdings begünstigen Wasser und Grünfutter die Vermehrung der gefürchteten Heuschrecken, die sich vielerorts in Ostafrika ausbreiteten und zur Plage entwickelten. So müssen die Massai vielleicht doch bald den Gott besänftigen und um Gnade bitten. Doch bevor sie den Vulkan besteigen, wäre ein Blick auf die aktuellen Sentinel-Bilder sinnvoll, denn sie enthüllen thermische Anomalien im Krater des Vulkans. Sie verlagerten sich vom östlichen Kraterrand in sein Zentrum und stammen von der einzigartigen Lava, die immer wieder den Kraterboden durchbricht. Das Natrimukarbonatit ist als Schmelze ungewöhnlich kalt und lässt das Thermometer nur auf ca. 500 Grad Celsius klettern. Wie diese Schmelze genau entsteht ist nicht wirklich geklärt. Es könnte sich um eine differenzierte Restschmelze handeln, die aus einem basaltischen Stammmagma entsteht.

Rotation von Mikroplatten im Riftvalley

Einem weiteren Rätsel dieser einzigartigen Region kamen jüngst Wissenschaftler des GFZ Potsdams auf die Spur. Im Riftvalley bildet sich seit Jahrmillionen eine neue kontinentale Naht, entlang derer sich der Osten Afrikas vom Rest des Kontinents abspaltet und weg driftet, wobei ein neuer Ozean entsteht. Der Boden des Ostafrikanischen Rifts (dem embryonalen Ozean) ist in zahlreichen Mikroplatten zerbrochen, die nicht nur auseinander driften, sondern sich auch verdrehen. Dabei dreht sich die Victoria-Platte gegen dem Uhrzeigersinn. Bisher nahm man an, dass die Rotation der Viktoria-Platte von einem Mantelplume verursacht wird, doch dem scheint nicht so zu sein. Die Forscher um Dr. Anne Glerum ließen Computersimulationen laufen, die errechneten, dass die unterschiedliche Mächtigkeit der Mikroplatten im verzweigten System des Riftvalleys für ihre Drehbewegungen verantwortlich sind. Die Computer berechneten die Bewegungen der Mikroplatten für die letzten 10 Millionen Jahren. die Hauptautorin der Studie kommentierte die Ergebnisse folgendermaßen: „Solche großen Modelle laufen auf Hochleistungs-Computerclustern, sagt Anne Glerum. „Wir haben die Vorhersagekraft unserer Modelle getestet, indem wir ihre Geschwindigkeitsvorhersagen mit GPS-Daten und unsere Stressvorhersagen mit der World Stress Map verglichen haben, einer globalen Zusammenstellung von Informationen über das heutige Krustenspannungsfeld, die seit 2009 gepflegt wird. Dabei zeigte sich, dass die beste Übereinstimmung mit einem Modell erzielt wurde, das die Festigkeitsverteilungen erster Ordnung der Lithosphäre der EARS (East African Rift System) so enthielt, wie das auch bei dem von uns erstellten Modell der Fall war.“

Yellowstone und die übersehenen Eruptionen

Die Yellowstone-Caldera zählt nicht nur zu den größten Vulkanen der Welt, sondern auch zu jenen Feuerbergen, die besonders viel mediale Aufmerksamkeit genießen. Diese Tatsache ist nicht zuletzt den gigantischen Eruptionen geschuldet, die der Vulkan alle 630.000 Jahre zu erzeugen scheint. Die Supervulkan-Eruptionen haben das Potenzial einen vulkanischen Winter zu generieren und die Welt ins Chaos zu stürzen. So ist es nicht verwunderlich, dass jede noch so kleine Regung des Vulkans Weltuntergangsfantasien erstarken lässt. Aktuell manifestiert sich ein Schwarmbeben im nordwestlichen Teil der Caldera, genauer, in der Nähe des Norris Geyser Basins. Tatsächlich ist diese Region der Yellowstone-Caldera seismisch besonders aktiv. Und nicht nur die Erdbeben liefern Grund zur Sorge: Im Norris Geyser Basin hob sich vor einigen Jahren der Boden an und es entstanden neue heiße Quellen. Seit 2 Jahren ist der Steamboat Geyser ungewöhnlich aktiv. Im Mai sprang er 5 Mal und steigerte seine Aktivität deutlich. Sein bisher jüngster Sprung ereignete sich am 3. Juni. Doch die Vulkanologen des Parks geben Entwarnung und sehen in den Ereignissen lediglich eine Veränderung des Hydrothermalsystems des Calderavulkans, die nicht zwingend mit einer Zunahme magmatischer Aktivität einhergehen muss. Obgleich das Hydrothermalsystem natürlich von der Erdwärme betrieben wird, die von der Magmakammer befeuert wird.

Weitere Supervulkaneruptionen entdeckt

Die Yellowstone-Caldera ist nur die jüngste Manifestation des Yellowstone-Hotspots, der das Magma für die Eruptionen liefert. Der Hotspot geht vom Erdmantel aus und ist ortsstabil. Während sich die Nordamerikanische Kontinentalplatte um jährlich 2,5 cm in südwestliche Richtung verschiebt, brennt sich das Magma durch die Erdkruste und sorgt für die Eruptionen. So entstand im Laufe der Jahrmillionen eine Vulkankette, die sich in diesem besonderen Fall in Form von Calderen manifestierte. Diese sind teilweise so alt, dass die sichtbaren Strukturen verschwunden sind. Die jüngeren Calderen entstanden in der Snake-River-Ebene.

Ein Wissenschaftlerteam der University of Leicester untersuchte nun die vulkanischen Ablagerungen südwestlich der Yellowstone-Caldera genauer und stellte fest, dass sie von 2 Eruptionen im Miozän stammten. Bisher ging man davon aus, dass die Ablagerungen infolge zahlreicher kleinerer Eruptionen gebildet wurden. Genauere Datierungen lieferten die Erkenntnis, dass die beiden Eruptionen vor 9 und 8,7 Millionen Jahre stattfanden. Sie folgten mit einem Abstand von nur 300.000 Jahren aufeinander. Die Wissenschaftler gehen nun davon aus, dass sich das Ausbruchsintervall zwischen den Supervulkan-Eruptionen deutlich verlängerte und sich bis zum nächsten Ausbruch verdreifachen könnte. Sie interpretieren das als langsame Abnahme der Aktivität des Yellowstone-Hotspots. Allerdings ist die tatsächliche Anzahl der Supervulkan-Eruptionen unbekannt. Bisher entdeckten die Forscher 7 Eruptionszentren entlang der Snake-River-Ebene. Das jüngste dieser Zentren bildet die Yellowstone-Caldera in der bisher 3 Supervulkan-Eruptionen identifiziert wurden. Es ist durchaus möglich, dass es weitere Calderen gibt, die multiple Ausbrüche erzeugten, deren Ablagerungen noch nicht entdeckt wurden, oder die es einfach nicht mehr gibt.

Quelle: geoscienceworld

Erdbebenforschung: Teufelstreppe statt Poissonkurve

Die Erdbebenforschung hat es sich zum Ziel gemacht, irgendwann einmal Erdbeben vorhersagen zu können. Bisher fütterte man Computermodelle mit mathematische Algorithmen, die davon ausgingen, dass starke Erdbeben in relativ geringen Tiefen Mustern folgen, die sich mit Hilfe einer Poissonkurve beschreiben lassen. Doch die Annahme, dass starke Erdbeben in regelmäßigen Zeitintervallen erfolgen erhielt einen starken Dämpfer: ein Forscherteam um Dr. Yuxuan Chen veröffentlichte eine Studie nach der die zeitliche Verteilung von Erdbeben der Teufelstreppe einer Cantorfunktion folgt.

Die Cantor-Funktion ist ein Fraktal, das durch nichtlineare dynamische Systeme demonstriert wird, in denen eine Veränderung in einem beliebigen Teil das Verhalten des gesamten Systems beeinflussen könnte. In der Natur findet sich das Muster unter anderem in Sedimentationsfolgen, Änderungen der Hebungs- und Erosionsraten und Umkehrungen im Magnetfeld der Erde.

Demnach treten starke Erdbeben in einer Region in Haufen (Custern) auf, die durch lange, aber unregelmäßige Intervalle seismischer Ruhe voneinander getrennt sind. Das widerspricht der These, dass sich der Stress an einer Störungszone gleichmäßig aufbaut und in mehr oder weniger regelmäßigen Intervallen in einem Erdbeben entlädt. Daher ist es auch unsinnig ein Erdbeben als statistisch Überfällig anzusehen.

Ein Grund, warum man bisher davon ausging, dass starke Erdbeben einer statistischen Regelmäßigkeit folgen, könnte darin liegen, dass man das Auftreten von Erdbeben noch nicht lange genug dokumentiert. Auch die Zeitabstände zwischen den Erdbeben einen Clusters könnten relativ lange sein und die Pausen zwischen den Clustern könnten um soviel länger sein, dass in den Erdbebenkatalogen vorhergehende Cluster überhaupt nicht erfasst sind.

„Die Faktoren, die die gehäuften Ereignisse steuern, sind komplex und könnten unter anderem den Stress, der ein Erdbeben stimuliert, Änderungen der Reibungseigenschaften und die Stressübertragung zwischen Fehlern oder Fehlersegmenten während eines Bruchs beinhalten“, sagte Gang Luo von der Universität Wuhan. Er merkte an, dass die Intervalle offenbar in umgekehrter Beziehung zur tektonischen Dehnungsrate im Hintergrund für eine Region stehen.

Die Studie hat enorme Auswirkungen auf die Risikoabschätzung in Erdbebengebieten: bisher ging man davon aus, dass nach einem starken Erdbeben mit einer Magnitude größer als 6 die gleiche Region nicht so bald wieder von einem weiteren starken Erdbeben heimgesucht wird. Doch die neuen Erkenntnisse gehen vom Gegenteil aus: wenn es erst einmal zu einem starken Erdbeben gekommen ist, steigt die Wahrscheinlichkeit für weitere starke Erdbeben in der Region deutlich an. Diese Erkenntnis deckt sich auch mit meinen eigenen Beobachtungen, auf die ich z.B. in Bezug auf die Erdbebenserien in Mittelitalien, Sulawesi, und Lombok hingewiesen habe. Gerade Erdbeben im 6-er Bereich scheinen nicht stark genug zu sein, um alle Spannungen eines Störungszonenbereichs abzubauen. Dafür können sie aber eine Art Kettenreaktion hervorrufen und Erdbeben in benachbarten Segmenten einer Störungszone auslösen.

(Quellen: seismosoc.org, Bulletin of the Seismological Society of America, 2020; doi: 10.1785/0120190148)

Stromboli: Neue Erkenntnisse zum Fördersystem

Neue Forschungsarbeiten entlockten dem Stromboli weiter Geheimnisse über sein komplexes Fördersystem und brachten die Wissenschaftler auf die Spur, warum der Stromboli in den letzten Jahren paroxysmale Eruptionen erzeugte.

Die Forschergruppe um Piergiorgio Scarlato, Vulkanologe und Leiter des HPHT-Labors des INGV, richteten ihre Aufmerksamkeit auf das Mineral Pyroxen, das mit der Lava des Strombolis eruptiert wird. Die Forscher nahmen besonders die Klinopyroxen-Phänokristalle unter die Lupe (oder vielmehr unter dem Mikroskop) die zwischen 2003 und 2017 vom Stromboli eruptiert wurden. Klinopyroxene sind für die Wissenschaft von besonderem Interesse, weil sich in ihren Kristallstrukturen die Entwicklungsgeschichte der Mineralien wiederspiegelt. Wie in einem Archiv speichern sie Prozesse, die sich im Fördersystems eines Vulkans abspielen. In jahrelanger akribischer Arbeit haben die Forscher gelernt dieses Archiv zu lesen. Im Labor untersuchten sie, wie sich die Pyroxene unter verschiedenen Druck- und Temperaturverhältnissen veränderten und verglichen diese Daten mit den Mineralien vom Stromboli.

Die Wissenschaftler identifizierten so 2 Magmakammern. Eine befindet sich in ca. 10 km Tiefe, ein Zweite in 3 km Tiefe. Das Magma in der untern Magmakammer ist deutlich heißer als in der Oberen. Wenn das heiße Magma aufsteigt und sich die beiden unterschiedlich temperierten Magmen mischen, können die starken Eruptionen entstehen, wie sie in den letzten Jahren gehäuft vorkamen.

Darüber hinaus“, erklärt Scarlato in seinem Forschungsbericht, „zeigen die Pyroxene, die in den Produkten der Explosion vom 5. April 2003 gefunden wurden, dass dieser Wechselwirkungsprozess viel schneller verlief als die nachfolgenden Ausbrüche, die bis 2017 stattfande. Dies bedeutet, dass sich die Geometrie und die Form der Magmakammer unter dem Vulkan im Laufe der Zeit zu verändern begonnen haben, in Übereinstimmung mit der Tatsache, dass die Pyroxene einen Prozess der Wechselwirkung zwischen den beiden Magmen viel weniger offensichtlich aufgezeichnet haben“.

Die Forscher fanden auch heraus, dass die Eruptionen im Zeitraum von 2003 bis 2017 mit einem viel wärmeren magmatischen Oberflächensystem verbunden sind als in der Vergangenheit.

„Diese weitere Entdeckung“, erklärt der Vulkanologe, „steht wahrscheinlich im Zusammenhang mit den Explosionen, die sich im vergangenen Sommer auf Stromboli ereignet haben. Aus diesem Grund untersucht unser Team jetzt die im letzten Jahr ausgebrochenen Vulkanprodukte, um zu verstehen, ob das Fördersystem des Stromboli weiter verändert wurde“, schließt Piergiorgio Scarlato.

Quelle: researchgate.net

Tungurahua: Droht ein Flankenkollaps?

Am ecuadorianischen Vulkan Tungurahua droht möglicherweise eine Katastrophe: neue Forschungsergebinsse scheinen zu belegen, dass die Westflanke des Vulkans abrutschen könnte.

Die Studie wurde von Dr. James Hickey und seinem Team der Camborne School of Mines im Earth & Planetary Science Letters veröffentlicht.

Mit Hilfe von InSAR-Messungen wurde eine Deformationsepisode im November 2015 untersucht. Zu diesem Zeitpunkt war der Tungurahua eruptiv tätig und stand hier regelmäßig in den Schlagzeilen. Innerhalb von nur 3 Wochen wurde eine maximale Verschiebung von ca. 3.5 cm registriert. Zeitgleich gab es viele Erdbeben. Aus diesen Daten erstellten die Forscher verschiedene Modelle und kamen zu dem Schluss, dass die Westflanke des Vulkans abrutschen könnte. Die Bodendeformation erfolgte unsymetrisch: Im Westen des Vulkans sammelte sich mehr Magma an als an anderen Stellen. Dadurch wurde die Westflanke des Vulkans destabilisiert.  Sollte sich dort weiteres Material ansammeln, könnte das zum Kollaps der Flanke führen.

Die Entstehungsgeschichte des Tungurahuas zeigt, dass solche Vorkommnisse immer wieder stattfanden. Vor 3000 Jahren kam es bereits zu einem Kollaps der Westflanke. Bei diesem Kollaps entstand eine Schuttlawine aus Gestein, Erde und Wasser, deren Ablagerungen eine Fläche von 80 Quadratkilometern bedeckte. In zahlreichen Eruptionen schloss sie die Narbe wieder und der Kegel wuchs auf seine heutige Höhe von mehr als 5000 m an.

Das Beispiel des Mount St. Helens in den USA zeigt, dass durch einen Flankenkollaps nicht nur eine Schuttlawine entstehen kann, sondern auch eine seitwärts gerichtete Eruption, die dann zusätzlich pyroklastische Ströme und Lahare generieren kann. Sollte sich so ein Ereignis am Tungurahua ereignen, wäre die Katastrophe perfekt.

Doch Dr. Hickey kommentierte das Szenario so: „Die Magmazufuhr ist einer von mehreren Faktoren, die die Instabilität der Vulkanflanke verursachen oder zu ihr beitragen können. Es besteht zwar die Gefahr eines möglichen Flankenkollapses, aber die Unsicherheit dieser natürlichen Systeme bedeutet auch, dass sie stabil bleiben könnte. Es ist jedoch auf jeden Fall ein Vulkan, den man in Zukunft im Auge behalten sollte“.

(Quelle: James Hickey et al, Earth and Planetary Science Letters (2020). DOI: 10.1016/j.epsl.2020.116104)

Vesuv: Gehirne verdampften

Obwohl der Untergang von Pompeji und Herculaneum fast 2000 Jahre her ist, stehen die versunkenen Römerstädte am Vesuv immer wieder in den Schlagzeilen: Neue Entdeckungen der Archäologen schaffen ein immer detailgetreueres Bild der Vulkan-Katastrophe, die im Jahr 79 n.Chr. zum Untergang der Orte führte.

Wissenschaftliche Studien belegen, dass die Gehirne einiger Todesopfer der Katastrophe sprichwörtlich verdampften. Bereits früher entdeckte man Frakturen und Risse in Knochen und Schädeln, die darauf hindeuteten, dass sie von innen her explodierten. Um Körperflüssigkeiten und speziell Gehirnmasse zu verdampfen, sind hohe Temperaturen nötig, wie sie in so einer Entfernung vom Vulkan nur durch pyroklastische Ströme verursacht worden sein können.

In einigen Schädeln wurde noch Gehirnmasse entdeckt. Sie wurde durch die extreme Hitze zu Seife, bzw. zu einem Gemisch aus Glycerin und Fettsäuren.

Jetzt haben Forscher schwarze Glasrückstände im Schädel eines Skelettes gefunden. Das Skelett wurde bereits in den 1960-iger Jahren ausgegraben und jetzt von einem Forscher-Team, um den Anthropologe Pier Paolo Petrone, neu untersucht. Die menschlichen Überreste befanden sich in einem Haus abseits der Bootshäuser, in denen viele Opfer gefunden wurden und lag auf einem Bett, das von Asche verschüttet worden war. Das Glas im Schädel des Opfers sieht aus wie Obsidian. Analysen wiesen nicht nur das Glas nach, sondern auch Proteine und Fettsäuren. Daher geht der Pier Paolo Petrone davon aus, dass es sich tatsächlich um verglaste Gehirnmasse handelt und nicht um Obsidian.

Das Glas lässt Rückschlüsse darüber zu, dass der Mensch durch einen extrem heißen pyroklastische Ströme starb: Es müssen Temperaturen von bis zu 520 Grad Celsius geherrscht haben. Anschließend fielen die Temperaturen schnell ab, so dass gekochte Gehirnmasse verglaste. Bisher ging man davon aus, dass es in den Glutwolken um 300 Grad heiß war.