Neue Studie zur Hunga-Tonga-Ha’apai-Eruption

Hauptphase der Hunga-Tonga-Hunga Ha’apai-Eruption vermutlich durch magmatisches Gas ausgelöst

Der submarine Vulkan Hunga-Tonga-Hunga Ha’apai war im Januar 2022 für eine der größten Eruptionen der letzten 300 Jahre verantwortlich. Bei der Eruption handelte es sich um einen plinianischen Ausbruch mit einem VEI 6. Nachdem der Ausbruch einige Wochen andauerte, intensivierte er sich am 15. Januar innerhalb weniger Stunden enorm und erzeugte in gigantischen Explosionen eine Aschewolke, die bis zu 58 Kilometer hoch aufstieg. Die Explosionen rissen ein Loch in die Ozonschicht und bliesen enorme Mengen Wasserdampf in die Stratosphäre, wo sie das Klima bis heute beeinflussen. Die Eruption war so zerstörerisch, dass die Vulkaninsel, die gerade über den Meeresspiegel hinausgewachsen war, zerstört wurde. Zurück blieb ein 850 Meter tiefer Krater mit einem Volumen von 6,3 Kubikkilometern. Diese explosive Eruption verursachte auch atmosphärische Schockwellen, extrem hohe Tsunamis und ungewöhnliche, zerstörerische Meteotsunamis.

Bislang wurde vermutet, dass Risse im Vulkan Meerwasser bis zu den Magmenkörpern dringen ließen und phreatomagmatische Explosionen auslösten. Neue Untersuchungen eines neuseeländisch-australischen Forscherteams legen nahe, dass der Vulkanausbruch auf eine gasgetriebene Explosion magmatische Ursprungs zurückzuführen ist, nicht auf eine phreatomagmatische Explosion. Die jüngsten Erkenntnisse von GNS Science und der Australian National University deuten darauf hin, dass der Unterwasserausbruch des Hunga-Vulkans durch komprimiertes Gas ausgelöst wurde.

Die Studie deutet darauf hin, dass verschiedene Faktoren wie die Größe des Ausbruchs, die zeitliche Abfolge, die Menge des freigesetzten Gases und die Vulkanstruktur den gasgetriebenen Auslöser beeinflusst haben könnten. Die Autoren schlagen vor, dass dieser Mechanismus möglicherweise für ähnliche Ausbrüche charakteristisch ist, unabhängig davon, ob es sich um ozeanische oder subaerische Vulkane handelt.

Die Forscher entwickelten ein Modell, das zeigt, dass die chemische Reaktion vulkanischer Volatile im Magmenkörper Minerale hervorbringt, die einen Magmenkörper so abdichten können, dass Gase, die bei der Magmendifferentiation entstehen, nicht entweichen. Zu diesen Mineralien gehören Anhydrit und Quarz, die bei der Eruption in großen Mengen ausgestoßen wurden. Durch diese Abdichtung steigt der Gasdruck im Magmenkörper enorm, bis die abdeckenden Gesteinsschichten nachgeben und das Gas explosionsartig entweicht und so den Ausbruch auslöst.

Allerdings ist bekannt, dass so starke Eruptionen auch ausgelöst werden können, wenn frisches Magma in einen Magmenkörper mit differenzierter Schmelze eindringt. Dann kommt es zu chemischen Reaktionen, die ebenfalls viel Gas freisetzen. Was gegen das neue Modell spricht, ist meiner Meinung nach, dass die Eruption schon Wochen im Gange war, bevor es zu dem plinianischen Ausbruch kam. Ich würde daher vermuten, dass der Magmenkörper bereits offen war und Gelegenheit hatte, Gasdruck abzubauen.

Richard Henley, der Hauptautor der Studie, betonte die Bedeutung des Verständnisses der Ursache des Ausbruchs für die Vulkanüberwachung und Risikovorsorge nicht nur in Tonga, sondern auch in anderen Gebieten mit Unterwasservulkanen, wie dem neuseeländischen Meeresgebiet. (Quelle: sciencedirekt.com)

Pompeji: Neue Ausgrabungen legten Festsaal frei

Pracht und Prunk in Pompeji: Festsaal mit Wandgemälden enthüllt

Aus Pompeji gibt es Neuigkeiten in Bezug auf eine weitere spektakuläre Ausgrabung, die in den vergangenen Tagen der Öffentlichkeit vorgestellt wurde: Die Rede ist von einem Bankettsaal, dessen Wände mit prächtigen Wandmalereinen verziert sind. Hierbei handelt es sich nicht nur um hübsche Dekorationen, sondern um Fresken, die Szenen aus Homers Trojanischen Kriegssagen zeigen. Somit liefert die Entdeckung weitere Einblicke in die römische Kultur.

Dass die Ruinen ein so wertvolles geschichtliches Archiv liefern, verdanken wir der Vulkankatastrophe, die im Jahr 79 n. Chr. durch einen Ausbruch des Vesuvs verursacht wurde. Innerhalb weniger Stunden wurde Pompeji mit einer 12 Meter mächtigen Schicht vulkanischer Ablagerungen bedeckt. Sie löschte alles Leben aus, doch zugleich konservierte sie das Begrabene für die Nachwelt ungewöhnlich gut.

Der Festsaal wurde in der Regio IX von Pompeji entdeckt, die seit einigen Jahren Gegenstand archäologischer Grabungen ist. Die Wände und der Boden des etwa 15 Meter langen und sechs Meter breiten Raums sind größtenteils intakt. Die Wände waren dunkel gestrichen, um den Rauch und Ruß von Lampen zu verbergen, wie Gabriel Zuchtriegel, Direktor des Archäologischen Parks Pompeji, berichtet.

Auf den Fresken sind bekannte Figuren aus Homers Werk „Ilias“ dargestellt. Figuren wie Paris, der trojanische Prinz, seine Geliebte Helena sowie die Seherin Kassandra sind zu sehen. Selbst Gottheiten wie Apollo blicken von den Wänden herab auf die Gäste, die sich in dem Raum einst versammelten.

Unter einer Treppe, die zum ersten Stock des Hauses führt, wurden Graffiti entdeckt, darunter Zeichnungen von Gladiatoren und ein stilisierter Phallus. Dies unterstreicht erneut, dass Pompeji nicht nur die Pracht der Eliten, sondern auch Zeugnisse der einfachen Leute bewahrt hat.

Die Ausgrabungen in Pompeji sind noch lange nicht abgeschlossen, und weitere aufregende Funde werden erwartet.

Santorin: Hinweise auf Eruption im Mittelalter entdeckt

Geoforscher finden Beweise auf eine größere mittelalterliche Eruption des Santorin-Vulkans

Ein internationales Forschungsteam unter Leitung von GEOMAR in Kiel und der Universität Hamburg hat mit seinen Forschungen auf einem Bohrschiff vor Santorin Beweise für einen submarinen Vulkanausbruch gefunden, der bis jetzt nur aus historischen Aufzeichnungen bekannt war. Diese stammten aus dem Mittelalter und berichteten von brodelndem und verfärbtem Wasser und treibenden Bimssteinen vor der Küste der Insel. Es sollen sich sogar Glutwolken gebildet haben. Demnach hatte es im Jahr 726 n. Chr. eine Eruption gegeben, die mit der kleinen Vulkaninsel Kameni, die sich in der Bucht von Santorin befindet, im Zusammenhang stand. Bis jetzt fehlten allerdings wissenschaftliche Beweise für die Eruption. Die Forschungen lösten somit ein historisches Rätsel. Dabei stellte sich auch heraus, dass das Ausmaß des Ausbruchs viel größer als bisher angenommen war.

Santorin ist Teil des gut erforschten Vulkansystems im Kykladenbogen. Der Kameni-Vulkan, der im Zentrum des Archipels liegt, brach mehrfach aus. Anzeichen vulkanischer Unruhe gab es zuletzt in den Jahren 2011/12, als Schwarmbeben und Bodenhebungen in der Caldera detektiert wurden. Die Studie widerlegt die Annahme, dass Caldera-Zyklen stets ähnlich verlaufen, und zeigt, dass explosive Ausbrüche auch unabhängig großer Eruptionen auftreten können, die in der Vergangenheit zur Calderablildung geführt haben.

Die Forscher fanden in bei ihren Untersuchungen des Meeresbodens Spuren vulkanischer Ablagerungen, die mit dem Ausbruch von 726 in Verbindung gebracht werden konnten. Die Auswurfmassen von Bimsstein und Asche bedeckten damals große Flächen des Meeres und erreichten Küsten in mehr als 400 Kilometern Entfernung. Mit einem Vulkanexplosivitätsindex von 5 war die Eruption deutlich stärker als bisher angenommen.

Die Studie warnt vor möglichen Auswirkungen eines ähnlichen Ereignisses in der heutigen Zeit, einschließlich Tsunamis, Bimsstein-Teppichen und Aschewolken, die den östlichen Mittelmeerraum gefährden könnten. Die Instabilität des Kameni-Vulkans macht ihn anfällig für Hangrutsche, die ebenfalls zu schweren Schäden infolge von Tsunamis führen könnten.

Experten betonen die Notwendigkeit von Frühwarnsystemen, da ein unvorbereiteter Vulkanausbruch oder Flankenkollaps schwerwiegende Folgen haben könnte. Diese Erkenntnisse haben auch Relevanz für andere Vulkanregionen, wie die Phlegräischen Felder bei Neapel, wo sich ein Teil des Calderavulkans Unterwasser befindet. Sie zeigen die Bedeutung der Erforschung von Ablagerungen am Meeresgrund für das Verständnis und die Vorhersage von Vulkanausbrüchen.

Mittelmeer: Eine Erdkrustenplatte steht Kopf

Das Mittelmeer verfügt über eine vielfältige geologische Entstehungsgeschichte und stellt den verbliebenen Teil des ehemaligen Tethys-Meeres dar, das einst Pangäa umgab. Im Osten des Mittelmeers ist immer noch Erdkruste aus der Tethys-Meerzeit vorhanden, die mit einem Alter von 300 Millionen Jahren zu den ältesten der Welt zählt. Die Entstehung des Mittelmeeres begann mit dem Auseinanderbrechen von Pangäa und ist eng mit der Bildung junger Faltengebirge im heutigen Mittelmeerraum verbunden. Die Kollision der beiden großen Kontinente Afrika und Eurasien führt dazu, dass Afrika unter Eurasien absinkt und subduziert wird. Die aktivsten Subduktionszonen befinden sich im östlichen Mittelmeerraum vor der Türkei und Griechenland sowie im zentralen Mittelmeer vor Sizilien, wo Vulkanausbrüche und Erdbeben auf die geologischen Prozesse im Untergrund hinweisen. Im westlichen Mittelmeer vor Frankreich und Spanien gibt es zwar keine aktiven Vulkane, aber dennoch Erdbeben, wenn auch nicht so viele wie im Osten. Dies war jedoch nicht immer der Fall. Kürzlich haben Forscher festgestellt, dass die Subduktion im Westen des Mittelmeeres früher aktiver war als heute. Dabei entdeckten sie ein Fragment umgekippter Erdkruste, das im Erdmantel steckt und auf dem Kopf steht.

Erdbeben im Erdmantel liefern Hinweise auf kopfstehende Krustenplatte

Das Forscherteam um Meghan S. Miller (Australian National University) und Daoyuan Sun (University of Science and Technology Hefei) untersuchte die Daten tiefer Erdbeben im westlichen Mittelmeer und konzentrierte sich insbesondere auf die Datenanalyse eines Erdbebens mit einer Magnitude von 6,3, das im Jahr 2010 bei Granada stattfand. Das Besondere an diesem Beben war seine Tiefe von mehr als 600 Kilometern, was darauf hindeutet, dass es sich im Erdmantel manifestierte. Dieses Beben war nicht das einzige tiefe Mantelbeben in der Region, denn seit 1954 gab es sechs vergleichbare Beben. Die Wissenschaftler identifizierten schnell eine vertikale seismische Lücke in Tiefen zwischen 150 und 600 Kilometern. Darüber hinaus verhielten sich die von einem dichten seismischen Netzwerk in Spanien und Marokko aufgezeichneten Erdbebenwellen ungewöhnlich und waren teilweise viel zu langsam. Die Signale zeigten zudem im Seismogramm eine Nachschwingung.

Die Forscher kamen zu dem Schluss, dass die Erdbeben von einem Stück subduzierter Ozeankruste der Alboran-Platte ausgehen, das weit in den Erdmantel hinabreicht und sich unter dem Betischen Küstengebirge im Süden Spaniens befindet. Da die Erdbebenwellen teilweise zu langsam waren, vermuteten die Forscher, dass es eine Niedriggeschwindigkeitsschicht gibt, die auf wasserhaltige Gesteine hinweist, wie sie normalerweise nur auf der Oberseite subduzierter Erdkruste vorkommen. Durch Modellrechnungen fanden sie heraus, dass diese Niedriggeschwindigkeitsschicht nun unten liegt. Daher gehen die Forscher davon aus, dass das Stück subduzierter Kruste im Erdmantel umgekippt ist und die Unterseite schräg nach oben zeigt.

Es wird vermutet, dass die umgestürzte Platte ursprünglich nach Norden subduzierte und dann durch Plattenrückzug und Andocken an den iberischen und afrikanischen Kontinentalrändern gebildet wurde. Eine genauere Untersuchung der Plattenstruktur ist entscheidend, um die tektonische Entwicklungsgeschichte der Mittelmeer-Subduktionssysteme besser zu verstehen. (Quelle: GSW)

Pompeji: Antike Baustelle ausgegraben

Bei Ausgrabungen in Pompeji wurde eine Baustelle freigelegt – Möglicherweise Erdbebenschäden repariert

Als Pompeji von dem verheerenden Ausbruch des Vesuvs im Jahr 79 n. Chr. unter Tephra begraben wurde, war die Stadt nicht unbedingt in einem guten Zustand: 17 Jahre vor dem Vulkanausbruch hatte es ein starkes Erdbeben gegeben, das große Zerstörungen in der Stadt anrichtete. Diese waren zur Zeit des endgültigen Untergangs Pompejis noch nicht alle wieder behoben. Hinweise auf die Schäden und wie man sie zu Zeiten der Römer reparierte, liefert nun die Entdeckung einer Baustelle. Das Erdbeben wird heute übrigens von einigen Wissenschaftlern direkt mit dem Vesuv in Verbindung gebracht, und sie meinen, dass das Beben ein erstes Anzeichen des Erwachens des Vulkans war.

Seit dem 18. Jahrhundert haben Ausgrabungen in Pompeji fortwährend Neues zutage gebracht. Die aktuellen Ausgrabungen im Gebiet der sogenannten Insula 10 von Regio IX brachten vor einigen Monaten das Haus einer Bäckerei zutage, an dem offenbar noch die Erdbebenschäden repariert wurden. Werkzeuge, gestapelte Tuffsteinfliesen, Ziegelsteine sowie Kalkanhäufungen wurden freigelegt, die darauf hindeuten, dass bis zum Ausbruch des Vesuvs gearbeitet wurde. Für die Archäologen besonders aufschlussreich ist der Fund einer Tür auf die mit Kohle römische Ziffern geschrieben wurden. Hierbei handelte es sich möglicherweise um eine Baustellenabrechnung.

Der Fund zeigt, wie Pompeji Einblicke in das römische Baugewerbe liefert. Der Parkdirektor Gabriel Zuchtriegel betont die Bedeutung von Zement in der Antike und hebt hervor, dass die aktuellen Ausgrabungen die Funktionsweise einer antiken Baustelle nahezu live erlebbar machen.

Immer wieder wurden bei den Ausgrabungsarbeiten am gleichen Gebäude seltene Fresken entdeckt. Eins zeigt ein Portrait des jungen Besitzerpaares der Bäckerei, ein anderes eine Darstellung aus der griechischen Mythologie: Phrixus und Helle auf der Flucht über das Meer.

Die Entdeckung einer Sklavenkammer enthüllte jüngst, unter welch schlechten Bedingungen die Untersten der römischen Gesellschaft leben mussten.

Weiterführender Link: Pompeji

Mars: Wirkt sich Marsanziehung auf irdisches Klima aus?

Neue Studie zeigt, dass der Mars mit seiner Schwerkraft Meeresströmungen und Klima der Erde beeinflusst

Unser Nachbarplanet Mars übt definitiv einen großen Einfluss auf unsere Neugierde aus und steht dieser Tage öfter im Fokus von Forschung und Wissenschaft und damit auch in der Berichterstattung auf Vnet. Der Mars ist der erdähnlichste Planet im Sonnensystem und obwohl er über keine Plattentektonik verfügt, gibt es hier die größten Vulkane im Sonnensystem. Tiefe Canyons und seine rostrote Farbe deuten darauf hin, dass es einst fließendes Wasser und freien Sauerstoff gab, der Eisen rosten ließ. Vermutlich verlor der Mars sein Wasser und seine Atmosphäre, als der Erdmantel erstarrte, die plattentektonischen Prozesse zum Erliegen kamen und sein Magnetfeld kollabierte, wodurch der Planet dem Sonnenwind schutzlos ausgesetzt war. Im Laufe der Jahrmillionen verlor er durch den kosmischen Teilchenbeschuss seine Lufthülle und das Wasser verdampfte aufgrund des fallenden Luftdrucks.

Obwohl es der Mars nicht geschafft hat, auf Dauer ein Ökosystem zu generieren, könnte er der Erde helfen, unseres zu bewahren: Wie eine Studie jüngst herausgefunden haben will, könnte der Mars mit seiner Schwerkraft die Erde in einer bisher unbekannten Weise beeinflussen: Alle 2,4 Millionen Jahre kommt es zu einer besonderen planetaren Konstellation, bei der die Schwerkraft des Mars besonders stark auf die Erde einwirkt. Die Erde rückt dabei etwas näher an die Sonne heran, wodurch es bei uns wärmer wird. Außerdem beeinflussen die so verstärkten gravitativen Kräfte tiefe Meeresströmungen, die besonders in Zeiten, in denen die Meeresströmungen zu stagnieren drohen, diese aufrecht erhalten, so dass die Ozeane nicht komplett kippen und das Ökosystem kollabiert. Meeresströmungen verändern sich über lange Zeiträume gesehen, schon allein durch die Plattentektonik, die Kontinente wandern lässt, so dass Ozeane entstehen und vergehen.

Bohrkerndaten mariner Sedimente lassen Rückschlüsse auf Auswirkung der Marsanziehung auf das irdische Klima zu

Zu diesen Erkenntnissen gelangte das australisch-europäische Forscherteam um Wissenschaftlerin Adriana Dutkiewicz. Sie interpretierten in einer computergestützten „Big Data“-Analyse“ mehr als zweihunderte Bohrkerndaten mariner Sedimente, die in den letzten 50 Jahren vom Grund der Weltmeere erbohrt wurden. Anhand der tief in die Vergangenheit hinabreichenden Gesteinsproben ließen sich Veränderungen der Tiefseeströmungen im Laufe der letzten 70 Millionen Jahre nachvollziehen. Dabei wurden 4 lange anhaltende Zeitabschnitte entdeckt, in denen die Meeresströmungen im Zyklus von 2,4 Millionen Jahren an Intensität zu- und abnahmen.

Was die Forschungsarbeit nicht enthüllte, ist, in welchem Stadium des 2,4 Millionen-Jahre-Zyklus wir uns aktuell befinden. Könnte es sein, dass zumindest ein Teil der aktuellen Klimaerwärmung diesem Zyklus geschuldet ist? Doch dafür vollzieht sich der aktuelle Klimawandel viel zu schnell. Unbestritten ist, dass es auch andere kosmische Einflüsse auf unser Klima gibt, die in wesentlich kürzeren Intervallen ablaufen, aber auch hier gehen die Forscher davon aus, dass sich die Veränderungen über lange Zeiträume hinziehen und sich nicht so schnell vollziehen, wie es aktuell der Fall ist.

Infobox

Es gibt noch weiter Zyklen kosmischen Ursprungs die einen Einfluss auf das Erdklima haben. Sie werden unter dem Begriff Milanković-Zyklen zusammengefasst.

Diese Zyklen beziehen sich auf periodische Veränderungen in der Erdbahn um die Sonne, einschließlich Variationen in der Form der Erdumlaufbahn (Exzentrizität), der Neigung der Erdachse (Schiefe) und der Präzession der Äquinoktien. Diese Veränderungen beeinflussen die Verteilung der Sonneneinstrahlung auf der Erde und spielen eine Rolle bei der Entstehung von Eiszeiten und Warmzeiten.


Übrigens: Im letzten Jahr gab es Hinweise auf ein starkes Erdbeben auf dem Mars, was ohne Plattentektonik ein rares Phänomen ist und mit dem Vulkanismus auf dem Roten Planeten zusammenhängen könnte.

(Quelle: Nature.com)



Forscher entdecken unbekannten Riesenvulkan auf dem Mars

 

Neuentdeckter Marsvulkan gibt Hinweise auf Eis – Möglicher Ort für Leben auf dem Mars

Der größte Vulkan des Sonnensystems ist der Olympus Mons auf dem Mars. Er hat eine Höhe von fast 22 Kilometern und einen Durchmesser von 600 Kilometern. Eine neue Entdeckung, die jüngst auf der 55. Lunar and Planetary Science Conference im US-Bundesstaat Texas enthüllt wurde, zeigt, dass der Olympus Mons in guter Gesellschaft ist.

Bei der Entdeckung handelt es sich um eine weitere gigantische Struktur vulkanischen Ursprungs, die sich in der Nähe des Marsäquators befindet. Sie wird als „Noctis-Vulkan“ bezeichnet und erstreckt sich über 450 Kilometer und erreicht eine Höhe von 9022 Metern. Damit ist der Noctis Vulkan zwar kleiner als der Olympus Mons, dennoch handelt es sich um eine äußerst interessante Entdeckung, und man darf sich fragen, warum sie erst jetzt gemacht wurde, denn es handelt sich ja nicht um eine kleine Struktur. Das Problem ist, dass der vermeintliche Vulkan stark erodiert ist und sich in einer Region verborgen hielt, die sich zwischen den Canyons des Valles Marineris und dem Noctis Labyrinthus befindet.

Obwohl das Gebiet schon auf zahlreichen Fotos von Marssonden auftauchte, wurde es erst im letzten Jahr Forschungsgegenstand einer Gruppe von Wissenschaftlern unter Leitung von Dr. Pascal Lee (SETI-Institut), die eigentlich auf der Suche nach Eis war.

Die Erkundung des Vulkans könnte tiefgreifende Einblicke in die geologische und klimatische Vergangenheit des Mars sowie in die Suche nach Leben bieten. Im südöstlichen Bereich des Vulkans deutet eine dünne Schicht junger vulkanischer Ablagerungen darauf hin, dass darunter noch Gletschereis verborgen sein könnte, was diesen Ort zu einem vielversprechenden Ziel für zukünftige Forschungen macht.

Die komplexe Geschichte dieses Gebiets wird durch das Vorhandensein von erhöhten Tafelbergen, einer zentralen Caldera, Lavaströmen und Ablagerungen von hydratisierten Mineralien unterstrichen, die auf eine langanhaltende vulkanische Aktivität hinweisen. Diese Merkmale bieten einzigartige Einblicke in die vulkanischen Prozesse auf dem Mars und die Interaktionen zwischen vulkanischem Material und vorhandenem Wasser oder Eis.

Zusätzlich zum Vulkan berichtet die vorgestellte Studie über ein auffälliges „blasiges Gelände“ innerhalb des Vulkans, bestehend aus zahlreichen wurzellosen Kegeln, die durch die Interaktion von vulkanischem Material mit unterirdischem Eis oder Wasser entstanden sein könnten. Diese Entdeckung unterstützt die Theorie, dass unter den vulkanischen Ablagerungen ein Gebiet mit ausgedehntem Gletschereis verborgen sein könnte.

Die Entdeckung des Noctis-Vulkans und der Hinweise auf Gletschereis bietet nicht nur neue Forschungsansätze zur geologischen Entwicklung des Mars, sondern eröffnet auch spannende Möglichkeiten für die Suche nach Leben und zukünftige Erkundungen durch Roboter und Menschen. Durch die Untersuchung dieser einzigartigen Region können Wissenschaftler tiefer in die Geschichte des Wasserzyklus auf dem Mars eindringen und potenziell lebensfreundliche Bedingungen identifizieren.

Vulkaneifel: Erdbebenaktivität im Westen höher als gedacht

Studie enthüllt erhöhte Erdbebenaktivität in der Westeifel – Messnetzt soll ausgebaut werden

Dass es in der Eifel Vulkane gibt, ist vielen bekannt, doch dass diese wieder aktiv werden könnten, glauben nicht so viele Menschen. Auch der Katastrophenschutz in Deutschland ist nicht für die Folgen eines Vulkanausbruchs gerüstet. Wenn man von einem Eifelvulkan annimmt, dass er wieder ausbrechen könnte, kommt das Gespräch schnell auf den Laacher-See-Vulkan im Osten der Eifel. An dessen Ufern gibt es Mofetten, die magmatisches Kohlendioxid ausstoßen. Außerdem treten immer wieder schwache Erdbeben auf. Viele davon in großer Tiefe. Sie deuten auf einen aktiven Magmenkörper hin. Nun enthüllt eine Studie, dass es auch unter dem Vulkanfeld der Westeifel vermehrt schwache Erdbeben gibt, und das Landesamt für Geologie Rheinland-Pfalz plant, das seismische Netzwerk deutlich auszubauen.

Den Beben auf die Spur kam eine Messkampagne, die zwischen September 2022 und September 2023 vom GFZ-Potsdam durchgeführt wurde. Unter Leitung von Thorsten Dahm wurden in der Eifel 350 Seismometer installiert und man stellte fest, dass es auch im Vulkanfeld der Westeifel zahlreiche schwache Erdbeben gibt. Viele dieser Erdbeben liegen in Tiefen von bis zu 40 Kilometern. Die Beben deuten darauf hin, dass die Vulkane in der Westeifel aktiver sein könnten, als man bisher annahm. In der Westeifel gibt es überwiegend Schlackenkegel und Maare, die monogenetisch aktiv waren. Der jüngste Ausbruch ereignete sich hier vor ca. 11.000 Jahren, als das Ulmener Maar entstand. Hierbei handelt es sich um den jüngsten Vulkan Deutschlands. Beim Alter des Maars gibt es eine gewisse Unsicherheit, denn die verschiedenen Datierungsmethoden kommen auf unterschiedliche Ergebnisse.

Die tiefen Erdbeben der Westeifel deuten genauso wie die Beben im Bereich des Laacher-See-Vulkans in der Osteifel auf tiefe Fluidbewegungen hin. Bei diesen Fluiden könnte es sich um Gase aus einem Magmenkörper handeln. Schon früher wurde angenommen, dass sich unter der gesamten Vulkaneifel ein großer Mantelplume erstreckt, der eines Tages wieder Schmelze bis zur Oberfläche fördern könnte. Um das Phänomen weiter zu erforschen und um die Vulkane besser im Blick zu halten, wurde nun beschlossen, dass man in der Westeifel zwölf seismische Messstationen installieren möchte. Sie sollen zunächst sieben Jahre lang im Betrieb bleiben. In ganz Rheinland Pfalz werden bislang 28 Messstationen betrieben. Die meisten davon fühlen der Osteifel den Puls.

Atlantischer Feuerring entsteht

Studie sieht Hinweise auf Bildung eines Feuerrings aus Subduktionszonen im Atlantik

Die Erde ist ein äußerst dynamischer Planet, dessen Oberfläche im steten Wandel begriffen ist. Meistens verläuft dieser Wandel zu langsam, als dass wir Menschen ihn in unserer kurzen Lebensspanne wahrnehmen könnten. Doch moderne Techniken helfen uns dabei, Modelle der Prozesse zu entwickeln, die für unseren Planeten alltäglich sind und ihn im Laufe von Jahrmillionen verändern. Eines dieser Modelle wurde in einer neuen Studie von portugiesischen Geoforschern der Universität von Lissabon entwickelt. Es hatte den Atlantischen Ozean als Forschungsgegenstand und modellierte die Zukunft des zweitgrößten Ozeans unseres Planeten.

Die Zukunft des Atlantischen Ozeans wird durch dramatische Veränderungen geprägt sein, denn es gibt Hinweise darauf, dass er entlang seiner Ränder einen „Feuerring“ aus Subduktionszonen  formen könnte. Aktuell wächst der Atlantik entlang des divergenten Mittelatlantischen Rückens langsam, während der Pazifik von aktiven Subduktionszonen umgeben ist, an denen Ozeankruste in den Erdmantel abtaucht: ein Prozess bei dem Erdbeben und Vulkanausbrüche entstehen und der Ozean kleiner wird bis er sich ganz geschlossen hat. Doch auch der Atlantik wird irgendwann seinen Expansionszyklus abschließen und an seinen Rändern Subduktionszonen entstehen lassen, die dort bislang selten sind. Die bekanntesten atlantischen Subduktionszonen findet sich in der Karibik (Kleine Antillen) und vor der Südspitze Südamerikas, wo der Scotia Inselbogen liegt.

Die Forscher aus Portugal untersuchten verschiedene Möglichkeiten, wie Subduktionszonen entstehen können, darunter die „Invasion“ einer solchen Zone aus einem benachbarten Meeresbecken. Die beiden bisher bekannten atlantischen Subduktionszonen griffen wahrscheinlich aus dem Pazifik in den Atlantik über. Der Gibraltarbogen, eine Subduktionszone im Mittelmeer, die sich in der Nähe der Meerenge von Gibraltar befindet, könnte eine entscheidende Rolle spielen. Obwohl ihre Aktivität in den letzten Millionen Jahren abgenommen hat, fanden die Forscher Anzeichen, dass der Gibraltarbogen in Zukunft wieder aktiver werden könnte. Dies könnte dazu führen, dass die Subduktionszone in den Atlantik eindringt und sich seitlich ausbreitet.

In etwa 20 Millionen Jahren könnte die Subduktionszone des Gibraltarbogens den Atlantik erreichen und entlang seiner Ostseite wachsen, ähnlich zu den Subduktionszonen im Pazifik. Dies würde dazu führen, dass der Atlantik zu schrumpfen beginnt, da mehr ozeanische Kruste unter die Kontinente taucht, als durch den mittelatlantischen Rücken neu gebildet wird. Diese Veränderung würde auch eine erhöhte vulkanische und seismische Aktivität entlang der Atlantikküsten Europas und Afrikas zur Folge haben, womit sich ein neuer „Feuerring“ bilden würde, der ähnlich dem im Pazifik ist.

Erst gestern schrieb ich in einem Artikel über die Sturtische Eiszeit, während der es vor gut 700 Millionen Jahren zu einer kompletten Vereisung des Planeten kam. Als Grund hierfür wird eine zu geringe vulkanische Tätigkeit angenommen, die durch die Plattentektonik bedingt war. In 20 Millionen Jahren könnte es dann ein Zuviel an vulkanischer Aktivität geben, die sich wiederum in ein global verändertes Klima niederschlagen könnte. Doch ob es bis dahin noch Menschen gibt, die hiervon betroffen wären, wage ich zu bezweifeln. (Quelle: Geology; doi: 10.1130/G51654.1)