Steinzeit-Vulkanismus in Bayern

Es gibt neue Hinweise darauf, dass die Vulkaneifel nicht der einzige Ort in Deutschland ist, in dem es in geologisch junger Vergangenheit aktiven Vulkanismus gegeben haben könnte. Geologen vom bayrischen Landesamt für Umwelt (LfU) suchen mittels einer Bohrung nach Beweisen für ihre Hypothese, dass es unweit des Fichtelgebirges Vulkane gab, die während der Steinzeit aktiv waren. Das Problem: die Steinzeit begann vor gut 2,6 Millionen Jahren und endete erst mit Beginn der Bronzezeit im 3. vorchristlichen Jahrtausend. Eine recht große Zeitspanne, die auch erklärt, warum es keine sichtbaren Spuren der eruptiven Vergangenheit der Region nordöstlich von Bayreuth gibt.

Roland Eichhorn, Leiter der Abteilung Geologischer Dienst beim LfU, teuft mit seinen Mitarbeitern eine Bohrung beim Ort Selb ab. Sie soll bis zu 70 m tief werden und liefert hoffentlich Beweise für die Hypothese, dass es hier in junger Vergangenheit einen Vulkanausbruch gab. Grund zu der Annahme lieferte die Analyse von Satellitenaufnahmen, die mit einem neuartigen Computerprogramm durchgeführt wurde. Die Software ist in der Lage dazu, die Vegetation herauszurechnen und enthüllt somit die Bodenstrukturen. Dabei traten eine Reihe von Bodenmulden zutage, die wie Vulkankrater oder Maare aussehen. Mit der Bohrung soll nun entsprechend vulkanisches Material ans Tageslicht gefördert werden. Die Forscher hoffen, dass in den Bodenproben auch organisches Material enthalten ist, mit dessen Hilfe sich C14 Datierungen anstellen lassen, so dass das Alter der Bodenproben bestimmt werden kann.

Die Hoffnung der Geologen ist nicht ganz unbegründet, denn dass es in der Region Vulkane gab ist bekannt. Schon im Jahr 2015 unternahm man wissenschaftliche Untersuchungen bei Tirschenreuth, dass ca. 30 km südlich der aktuellen Stelle liegt. Dort konnte man Eruptionen nachweisen, die sich vor 280.000 Jahren ereigneten. Das Cheb-Becken (Eger-Becken) in der Tschechei liegt nur ca. 10 km Luftlinie von Selb entfernt. Im Cheb Becken brachen Vulkane zuletzt vor ca. 15. Millionen Jahren aus. Dort sind heute noch Mofetten aktiv und es gibt Hinweise, dass sich Magma an der Grenze zur Lithosphäre ansammelt. Sollten die Forscher vom LfU beweisen können, dass es bei Selb während der jüngeren Steinzeit aktive Vulkane gab, könnte es auch die Suche nach einem Endlager für den Atommüll beeinflussen, denn vulkanisch aktive Gebiete scheiden hierfür aus.

Vulkaneifel: Seismische Messkampagne gestartet

Großangelegte seismische Messkampagne in der Vulkaneifel

Die Vulkaneifel ist das jüngste Vulkangebiet Deutschlands und wurde von den Wissenschaftlern lange Zeit als erloschen eingestuft. Der letzte Vulkanausbruch in der Osteifel ereignete sich vor gut 13.000 Jahren, als es zu einer großen Eruption des Laacher-See-Vulkans kam. In der Westeifel entstand vor gut 11.000 Jahren das Ulmener Maar. Der jüngste Vulkan der Republik. Ein Vulkan gilt laut Definition als erloschen, wenn er länger als 10.000 Jahre inaktiv war. Eine Definition, die man bislang auf die gesamte Vulkaneifel angewendet hatte, obwohl es sich hier ja nicht um einen einzigen Vulkan handelt, sondern um eine Vulkanregion, die von einem Hotspot gespeist wird. Mittlerweile fand man heraus, dass die Eruptionszyklen solcher Regionen durchaus größeren Zeiträumen unterliegen können. Zudem wurden von den wenigen Messstationen, die es im Bereich der Eifel bislang gab, schwache Erdbeben mit niedrigen Frequenzen festgestellt, die sich in großer Tiefe im Bereich des Laacher-See-Vulkans ereignen. Zusätzlich wurde eine leichte Bodenhebung detektiert, die sich praktisch über das gesamte Gebiet der Vulkaneifel erstreckt: ein Indiz dafür, dass der Mantelplume unter der Eifel aktiv ist und magmatische Fluide aufsteigen, die das gesamte Areal nach oben drücken.

Large-N-Experiment soll Magmenkörper des Laacher-See-Vulkans aufspüren

Seit Jahren gibt es Stimmen -zu denen „vulkane.net“ und der assoziierte Vulkanverein „Vulkanologische Gesellschaft e.V.“ zählen- die fordern, dass ein Vulkanologisches Observatorium in der Eifel errichtet werden müsste. Davon sind wir zwar noch ein Stück entfernt, doch heute verkündete das Geoforschungszentrum Potsdam den Start einer groß angelegten seismischen Messkampagne in der östlichen Vulkaneifel. Großflächig wurde im Gebiet des Laacher-See-Vulkans ein seismisches Array installiert, das aus 350 Geophonen besteht und der Vulkaneifel den Puls fühlt. Die so gewonnen Daten sollen Aufschlüsse über die seismische Aktivität geben und werden auch dazu genutzt, mittels seismischer Tomografie ein Abbild des Untergrundes zu erstellen. Besonders Magmenkörper und Mantelplumes wurden in der Vergangenheit mit dieser Methode aufgespürt und visualisiert. Ein schönes Beispiel hierfür liefert die Erforschung des Mantelplumes unter der Yellowstone-Caldera. In der Osteifel möchten die Wissenschaftler so den Magmenkörper aufspüren, der die Eruption vor 13.000 Jahren mit Magma versorgte. Vielleicht lässt sich dann auch bestimmen, ob er frische Schmelze enthält.

Das Projekt in der Eifel wird unter Federführung des GFZ durchgeführt, es sind allerdings mehrere andere Institute und Erdbebendienste beteiligt. Die meisten Geophone wurden auf Grundstücken der Kommunen installiert, einige stehen auch auf privaten Grundstücken.

Das GFZ weißt ausdrücklich darauf hin, dass es derzeit keine Anzeichen für einen bevorstehenden Vulkanausbruch in der Eifel gibt. (Quelle: GFZ-Potsdam)

Piton de la Fournaise und seine Erdbeben

  • Erdbeben markieren den Verlauf einer Scherzone unter der Ostflanke.
  • Die Scherzone wird von einem sich füllenden Magmenkörper nebst Dyke-Intrusion verursacht.
  • Ein Versagen der Ostflanke entlang der Scherzone kann nicht ausgeschlossen werden.

Erdbeben unter der Ostflanke am Fournaise bereiten Sorgen

Der Piton de la Fournaise zählt zu den aktivsten Vulkanen der Welt. Pro Jahr bricht er durchschnittlich 2-3 Mal aus. Die meisten Vulkanausbrüche des Schildvulkans sind von effusiver Natur und spielen sich im Bereich der Caldera Enclos ab. Somit gefährden sie nur Menschen, die sich zu nahe an eine Eruption heranwagen. Dennoch birgt der Vulkan die Gefahr, dass besonders große Eruptionen zur Calderabildung, oder einem Flankenkollaps führen könnten. Dieses Geschah schon mehrmals am Fournaise und ist auch von anderen Vulkanen bekannt, u.a. von den Vulkanen Ätna, Stromboli und Santa Maria. Auch die Südflanke des Vulkans Kilauea bewegt sich und könnte abscheren. Ähnliches befürchtet man auf der Kanareninsel La Palma. Grund genug, dieses Phänomen genauer zu untersuchen, um zu erfahren, unter welchen Belastungen eine Vulkanflanke abschert.

Deuten Erdbeben unter der Ostflanke einen bevorstehenden Flankenkollaps an?

Eines der wichtigsten Instrumente zur Vulkanbeobachtung ist das Seismometer, denn in den Stunden vor einer Eruption kommt es häufig zu seismischen Krisen, in deren Verlauf Hunderte schwache Erdbeben aufgezeichnet werden. Sie werden vom aufsteigenden Magma verursacht, dass auf seinem Weg zur Oberfläche Gesteine zerbricht und verschiebt. Aber auch unabhängig vom Magmenaufstieg gibt es eine permanente Hintergrundseismizität am Fournaise. Die Wissenschaftler des OVPF werteten Erdbeben seit 1996 aus und man entdeckte, dass sich viele Erdbeben entlang einer leicht geneigten Zone anordneten, die sich unter der Ostflanke erstreckt. Man sorgt sich darum, ob die Hintergrundseismizität nicht ein Anzeichen für ein bevorstehendes Abscheren der Ostflanke des Vulkans sein könnten und ob die Kraft des aufsteigenden Magmas vor einer Eruption ihren Kollaps verursachen könnte.

Überträgt man die Beben auf ein 3-D Model des Vulkans, so bildet die Lage der Beben eine Schale, die nach Osten geneigt ist und eine mögliche Schwächezone des Vulkangebäudes markieren könnte. Die Wissenschaftler ermittelten im Model zunächst die Scherfestigkeit des Vulkangebäudes und untersuchten dann, unter welchen Umständen diese Überschritten werden könnte, so dass es zu einem Versagen der Ostflanke kommt.

Das Fazit der Studie ist, dass die alltäglichen Hintergrunderdbeben von mechanischen Kräften ausgelöst werden, die immer auf den Vulkan einwirken: gravitative Kräfte, die reine Auflast des Vulkangebäudes und die Schubkraft des sich bewegenden Magmas im Untergrund. Die Simulationen zeigten, dass die Scherzone unter der Ostflanke nicht als allgemeine Schwächezone des Gebäudes angelegt ist, sondern aus dem sich füllenden Magmenkörper auf Höhe des Meeresspiegels resultiert und mit einer Dyke-Intrusion unter die Ostflanke einhergehen könnte. Ein Versagen der Struktur scheint nicht unmittelbar bevorzustehen, kann aber langfristig betrachtet nicht ausgeschlossen werden. (Quellen: OVPF, siencedirect.com)

Nyiragongo: Vulkanausbruch nicht vorhersagbar

Spalteneruption am Nyiragongo war laut Studie nicht vorhersagbar

Der kongolesische Vulkan Nyiragongo zählt zu den gefährlichsten Feuerbergen der Welt. Obwohl es sich um einen Schildvulkan handelt, deren Eruptionen normalerweise ohne Explosionen ablaufen, geht vom Nyiragongo ein großes Gefahrenpotenzial aus, denn seine plötzlich auftauchenden Lavaströme fließen schnell und fördern sehr viel Schmelze, die die nahe gelegenen Siedlungen innerhalb weniger Stunden erreichen kann. Zuletzt geschah das am 22. Mai 2021. Mehrere Dörfer wurden zerstört und es starben 20 Personen. Verheerender war der Ausbruch von 2002, als Teile der Großstadt Goma unter der Lava verschwanden und mehr als 147 Menschen den Tot fanden. Nach den Eruptionen wurden regelmäßig Stimmen laut, die Vorwürfe erhoben und fragten, warum die Menschen nicht vor einem Ausbruch gewarnt wurden. Eine neue Studie zeigt nun, dass eine Vorhersage der Eruptionen unmöglich war, obwohl schon Wochen zuvor einige Wissenschaftler des Goma-Observatoriums vor einem neuen Lavastrom gewarnt hatten. Die Warnungen erfolgten allerdings größtenteils aufgrund von Statistiken, da das Zeitintervall zwischen den letzten beiden Eruptionen (1977 und 2002) erreicht war. Zudem gab es in den Monaten vor dem Ausbruch von 2021 eine erhöhte Aktivität am Lavasee im Vulkankrater.

Die Studie wurde unter Leitung von Delphine Smittarello durchgeführt. Die Geowissenschaftlerin forscht am Europäischen Zentrum für Geodynamik und Seismologie in Luxemburg und besuchte den Nyiragongo mehrfach. Die Vulkanologen fühlen dem Nyiragongo mit einer Reihe von Messmethoden den Puls, wobei das Netzwerk erst im Jahr 2015 installiert wurde. Unter den Messgeräten befinden sich Gasspektrometer, Neigungsmesser und Seismometer. Deren Daten wurden nun nochmals ausgewertet und auch Satellitendaten wurden mit einbezogen. Delphine Smittarello kam zu dem Schluss, dass es im Vorfeld der Eruption keine Auffälligkeiten der geophysikalischen Parameter gab. Erst 40 Minuten vor dem Ausbruch setzten vulkanotektonische Erdbeben ein, die auf einen schnellen Magmenaufstieg mit einhergehender Spaltenöffnungen auf der Vulkanflanke hindeuteten. Das Besondere am Nyiragongo ist, dass in seinem tiefen Krater jahrelang ein Lavasee brodelte. Er wurde aus einem Reservoire gespeist, dass sich in gut 2 km Tiefe befindet und damit ungewöhnlich flach liegt. Über die Jahre hinweg akkumulierte sich dort eine gewaltige Menge Magma, die praktisch mit Beginn der Eruption schnell aufstieg und sich aus den Spalten in der Vulkanflanke ergoss. Das Magma, nebst der Lava des Lavasees flossen aus.

Die Forscher sind nun bemüht ein System zu entwickeln, damit die Menschen im Schatten des Vulkans wenigstens bei den ersten Anzeichen des Magmenaufstiegs gewarnt werden können.

Neues Gefahrenszenario am Nyiragongo

Die Studie untersuchte auch die Erdbebentätigkeit, die sich während und nach dem eigentlichen Vulkanausbruch bis unter den Kivusee erstreckte. Wie schon vermutet wurde, entstanden die Erdbeben durch Magma, dass in nur 500 m Tiefe durch die Erdkruste migrierte. Der unterirdische Lavafluss entsprach einer Dyke-Intrusion mit einem Volumen von 243 Millionen Kubikmeter, die vom Fördersystem des Nyiragongos ausging. Ähnliches erlebte man 2014 am isländischen Vulkan Bardarbunga. Dort kam es zu einem gewaltigen Lava-Ausbruch, einige Kilometer abseits des Vulkans. Im Kongo blieb die Schmelze im Erdboden unter dem Kivusee stecken. Im Seewasser sind große Mengen Kohlendioxid und Methan gelöst. Ich vermute, dass das Kohlendioxid aus Magmenköpern stammt, die bereits bei früheren Eruptionen unter den Seeboden eindrangen. Daraus ergibt sich für die Region ein weiteres Gefahrenszenario, denn wenn das intrudierte Magma eines Tages am Seeboden austreten sollte, können phreatomagmatische Eruptionen entstehen. Die Erschütterungen und geänderten Temperaturbedingungen des Seewassers könnten das gelöste Gas schlagartig freisetzten, mit verheerenden Folgen für die Anwohner des Kivu-Sees. (Quelle: nature.com)

Wasserdampf vom Vulkanausbruch in Tonga beeinflusst Klima

Dass Vulkanausbrüche das Klima beeinflussen können ist bekannt. Normalerweise stehen große Eruptionen im Verdacht einen Temperaturrückgang zu verursachen, der im Extremfall sogar einen vulkanischen Winter auslösen kann, in dessen Folge es zu Ernteausfällen kommt. Dieser Temperaturrückgang wird von Vulkanasche und Aerosole verursacht, die sich in der Stratosphäre verteilen und das Sonnenlicht abschirmen. Aktuell wird auf der Südhalbkugel aber ein gegenteiliger Effekt beobachtet, nämlich dass die Temperatur der unteren Luftschichten leicht gestiegen ist. Dafür werden enormen Mengen Wasserdampf verantwortlich gemacht, der durch die Eruption des submarinen Vulkans Hunga Tonga-Hunga Ha’apai in die Atmosphäre geblasen wurde. Wissenschaftler von NOAA beziffern den Wasserdampf-Eintrag auf 146 Teragramm. Das entspricht etwa 10% mehr Wasserdampf, als ohnehin in der Atmosphäre vorhanden ist. Wir erinnern uns: Die Eruptionen des Vulkans in Tonga begannen im Dezember letzten Jahres und erreichten im Januar ihren Höhepunkt, als sich die junge Vulkaninsel in gewaltigen Eruptionen selbst zerlegte. Der Ausbruch gilt als die stärkste Eruption seit dem Untergang der Vulkaninsel Krakatau im Jahr 1883. Die Druckwellen der Eruptionen liefen mehrfach um den gesamten Globus. Vulkanasche und Gase stiegen bis in die äußeren Atmosphäreschichten auf. Es entstanden Tsunamis, die umliegende Inseln zerstörten. Anders, als bei anderen sehr starken Eruptionen, wurden vergleichsweise wenig Vulkanasche und Aerosole in die Atmosphäre eingetragen, da sich der größte Teil der Eruptionen unter Wasser zutrugen. So sollen nur 450.000 Tonnen Schwefeldioxid in die Luft gelangt sein. Zum Vergleich: der Pinatubo-Ausbruch 1991 förderte 20 Millionen Tonnen des Gases. Bereits früh hatten Forscher postuliert, dass der Wasserdampf zu einer temporären Zunahme der Lufttemperaturen führen könnte, da er den Treibhauseffekt verstärkt. Außerdem könnte sich der Wasserdampf nachteilig auf das Ozon-Loch auswirken, welches wiederum die Temperaturen beeinflussen könnte.

Hunga Tonga-Hunga Ha’apai-Eruption könnte einen strengen Winter bringen

Die Autoren von severe-weather.eu sehen aktuell einen weiteren Zusammenhang und schaffen eine Korrelation zwischen einer starken Temperaturabnahme in der Stratosphäre der Südpolarregion und einer leichten Temperaturzunahmen in der Stratosphäre der Nordpolarregion. Während eine kalte Stratosphäre einen stabilen Polarwirbel (Jetstream) bedingt, ist es bei warmen Höhewinden genau andersherum. Dann kann es zu einem stark mäandrierenden Polarwirbel kommen, so dass im Winter polare Luftmassen bis weit in die gemäßigten Zonen vordringen können. So liegt es im Bereich des Möglichen, dass wir ein Europa einen starken Winter erleben werden.

Im Angesicht der Energiekries können wir in Europa einen kalten Winter überhaupt nicht gebrauchen… Morphy’s Law!

Ich gebe zu bedenken, dass es vielleicht einen Zusammenhang zwischen der Eruption auf Tonga und den extremen Wetterereignissen geben könnte, die wir derzeit in vielen Teilen der Welt erleben: extreme Dürren in China, Europa, Ostafrika und Südwest-USA einerseits und genauso extreme Niederschläge in Südasien, auf der arabischen Halbinsel, Teilen von Südamerika und Ostasien. Offiziell sehen Wissenschaftler aber eine Zusammenhang mit dem Klimaphänomen La Nina, der kalten Schwester von El Nino.

Vulkanischen Zeitbomben: VEI 7 Vulkanausbrüche häufiger als angenommen

Zahl besonders starker Vulkanausbrüche unterschätzt

Besonders starke Vulkanausbrüche mit einem VEI 7 oder 8 können das Weltklima stark beeinflussen und sogar einen globalen Winter verursachen. Die Häufigkeit solcher Ereignisse wurde bislang unterschätzt. Wissenschaftler sehen die Welt schlecht auf so eine Katastrophe vorbereitet. Dabei könnte eine besonders starke Eruption die Welt härter treffen und dramatischere wirtschaftliche Folgen haben, als die Corona-Pandemie. Zu diesem Schluss kommt eine Studie von Wissenschaftlern des Centre for the Study of Existential Risk (CSER) an der Universität Cambridge und von der Uni Birmingham, die jüngst in der Zeitschrift „Nature“ veröffentlicht wurde.

Die Studie fußt auf die Untersuchung von Eisbohrkernen aus den Regionen der beiden Pole. Das Eis wurde auf Spuren des vulkanischen Gases Schwefeldioxid untersucht. Große Konzentrationen des Gases weisen auf starke Eruptionen hin. Gelangen Schwefeldioxid-Aerosole in die obere Atmosphäre, dann können sie eine Abkühlung der Erde verursachen. Den gleichen Effekt hat Vulkanasche, die infolge großer Eruptionen bis in die Stratosphäre aufsteigt und um die Erde verteilen kann. Es kommt zu einem vulkanischen Winter, der im Extremfall eine Kaltzeit auslösen könnte.

Wahrscheinlichkeit einer VEI 7 Eruption bei 1:625

Die Wahrscheinlichkeit, dass sich innerhalb von 100 Jahren eine starke Eruptionen mit einem VEI 7 oder größer ereignet, liegt bei einem Sechstel. Statistisch gesehen treten solche Ausbrüche alle 625 Jahre auf. Eruptionen mit einem VEI 8 sollen sich alle 14.300 Jahre ereignen. Bislang ging man davon aus, dass sich VEI 7 Ausbrüche in Zeitabständen von mehr als 1000 Jahren wiederholen. VEI 8-Eruptionen sollten sich in Zeitabständen von mehr als 10.000 Jahren ereignen. Genauere Forschungen ermittelten früher Wiederholungsintervalle von 1.200 Jahren für VEI 7 Eruptionen und 17.000 Jahren für Eruptionen mit einem VEI 8. Die neuen Forschungen zeigen also, dass VEI 7 Eruptionen fast doppelt so häufig vorkommen, als man bislang dachte.

Die Forscher untersuchten auch die klimatischen Auswirkungen von Serien kleinerer Eruptionen und kamen zu dem Schluss, dass auch sie das Weltklima beeinflussen können. Andere Studien untersuchten in letzter Zeit den Einfluss der weltweiten Gletscherschmelze und des Meeresspiegelanstiegs auf Häufigkeit und Stärke von Vulkanausbrüchen und kamen zum Ergebnis, dass beide Phänomene Eruptionen verstärken können. Zugleich müssen künftige Studien zum Klimawandel die Effekte von Eruptionen besser berücksichtigen.

Die Forscher kritisieren, dass Hunderte Millionen Dollar in die Erforschung der Asteroiden-Abwehr investiert werden, aber praktisch keine Anstrengungen unternommen werden, um die Folgen großer Vulkaneruptionen abzumildern. Dabei ist das Risiko einer klimaverändernden Eruption 100 Mal größer als ein Asteroideneinschlag mit ähnlichen Folgen. Eine VEI 8 Eruptionen würde sich auf unsere Zivilisation dramatisch auswirken und könnte deren Ende einläuten. Auf jeden Fall käme es zu einem Wirtschaftskollaps. Die Studie blieb allerdings die Antwort schuldig, wie denn eine bessere Vorbereitung auf einen Vulkanausbruch globalen Ausmaßes aussehen soll?

Der letzte Vulkanausbruch mit einem VEI 7 ereignete sich im Jahr 1815 am indonesischen Vulkan Tambora. Bislang unklar ist der genaue VEI der Eruption des Hunga Tonga-Hunga Haʻapai, die im Dezember 2021 begann und ihren Höhepunkt im Januar 2022 erreichte. Dieser Ausbruch wird als die stärkste Eruption seit Krakatau im Jahr 1883 angesehen. Da es sich um eine submarine Eruption handelte sind die Folgen nicht 1:1 vergleichbar. Krakatau brachte es auf einen VEI 6. Statistisch gesehen hätten wir also noch etwas Zeit, bis zur nächsten VEI 7-Katastrophe, aber Naturphänomene halten sich selten an Statistiken.

Laacher See Vulkan: Bodenhebung auf neuer Karte sichtbar

  • Copernikus veröffentlichte eine interaktive Karte zur Bodendeformation
  • Der neue Service heißt European Ground Motion Service
  • Auf der Karte sind Bodenhebungen am Laacher See Vulkan sichtbar
  • Die Daten wurden allerdings zwischen 2016 und 2020 erhoben

Neues Tool erfasst Bodenhebungen am Laacher See Vulkan bis 2020

Ein recht neues Tool findet sich in einer interaktiven INSAR-Karte Europas, die vom European Ground Motion Service (EGMS) zur Verfügung gestellt wird. Auf der Karte stellen unzählige farbige Punkte Bodendeformationen in Europa dar, die sich -laut Pressemeldungen- innerhalb eines Jahres ereigneten. Bodendeformationen sind für uns Vulkanspotter von besonderem Interesse, da sie an Vulkanen Hinweise auf deren Aktivität geben können und somit ein wichtiges Instrument für die Vorhersage von Vulkanausbrüchen darstellen. Tatsächlich lassen sich Bodenhebungen an den italienischen Vulkanen Campi Flegrei und Ätna detektieren, selbst wenn es beim EGMS die Einschränkungen gibt, dass die Gipfelbereiche von Vulkanen von der Anzeige in der Karte ausgenommen sind. Hier liegt die Interpretationshoheit der Daten bei den zuständigen Observatorien. Nicht ausgespart sind die Maare und Schlackenkegel der deutschen Vulkaneifel. Diese habe ich heute einmal genauer betrachtet und festgestellt, dass die Karte Bodendeformationen im Bereich des Laacher-See Vulkans anzeigt. Allerdings -und hier kommt die große Einschränkung- scheinen die Daten nicht die aktuelle Bodenhebung widerzuspiegeln, sondern greifen auf Daten zurück, die zwischen 2016 und 2020 gesammelt wurden. Zu dieser Erkenntnis gelangt man, wenn man auf die einzelnen Farbpunkt klickt: es öffnet sich eine kleines Fenster mit Details zu den Daten. Diesen Umstand entdeckte ich beim Schreiben des Artikels.

Bodenhebung am Laacher See Vulkan

Am signifikantesten war die Bodenhebung bis 2020 im Nordwesten des Laacher-See Vulkans. Dort beträgt sie lokal bis zu 4 Zentimeter. Auch an anderen Stellen des Maars mit Caldera-Charakter lassen sich Bodenhebungen erkennen. Aber Vorsicht, es ist wahrscheinlich, dass sie von Menschenhand verursacht wurden, denn wenn man in die Karte des EGMS hineinzoomt, erkennt man, dass diese Spots in Bereichen liegen, in denen sich Steinbrüche befinden. Dort wird Lavagestein aus dem Ringwall des Laacher See-Vulkans abgebaut. Normalerweise sollte man meinen, dass dort dann Bodensenkungen festgestellt werden, doch klar ist auch, dass der Abraum irgendwo aufgeschüttet werden muss. Diese Daten sind auf jeden Fall mit Skepsis zu betrachten. Einzig im Nordwesten des Laacher Sees gibt es eine Bodenhebungszone unter dem Ort Glees. Dort finden keine Abbauarbeiten statt, dafür gibt es in der Nähe des Dorfes eine Kohlendioxid-Abfüllanlage, die im Zentrum der Bodenhebung liegt. Dort ereigneten sich in den vergangenen Jahren schwache Erdbeben, die mit Fluidbewegungen im Zusammenhang stehen könnten. Von Forschern wurden mehrere Szenarien aufgestellt, die beim Aufstieg einer Gasblase anfangen und bis zur Bildung eines Magmenkörpers reichen. Ich gehe davon aus, dass die Deformationen im Zusammenhang mit magmatischen Fluiden in Gasform zusammenhingen. Das Gas könnte von einem Magmenkörper in größerer Tiefe stammen. Ich möchte noch einmal darauf hinweisen, dass die Daten offenbar nicht aktuell sind und keine Daten zum Ist-Zustand liefern. Über die früheren Bodenhebungen wurde bereits in diesem Artikel berichtet.

Dinosaurier-Aussterben: Neues Indiz für Vulkanismus-Beteiligung

  • Vor 66 Millionen Jahren starben die Dinosaurier aus
  • Das Aussterben wurde von Klimaveränderungen ausgelöst
  • Ein Asteroideneinschlag wird als Auslöser angesehen
  • Vulkanausbrüche in Indien könnten mitverantwortlich sein
  • Dafür gibt es neue Belege aus Deutschland

Spur des Aussterbens der Dinosaurier in Deutschland entdeckt

Lange Zeit herrschten die Dinosaurier über die Erde, bis sie vor ca. 66 Millionen Jahren die Bühne des Weltgeschehens gewaltsam verließen. Mit ihnen verschwanden gut 75% aller Lebewesen auf dem Blauen Planeten. Diese Massesterben markiert das Ende der Kreidezeit und läutete ein neues Epoche ein: das Paläozän. Ab diesem Zeitpunkt dominierten die Säugetiere. Lange Zeit galt das Artensterben als rätselhaft, bis man in Mexiko einen riesigen Krater entdeckte, der durch den Einschlag eines Asteroiden entstand. Seitdem geht man davon aus, dass der Asteroid eine Kaltzeit auslöste, in der die Saurier umkamen.

Vulkanausbrüche in Indien könnten Mitschuld am Aussterben der Dinos sein

Vor wenigen Jahren wurde diese Theorie ergänzt, indem man annahm, dass der Asteroideneinschlag extrem starke Vulkanausbrüche verursachte, die einen Anteil an den Klimaveränderungen hatten und das Aussterben der Dinos mit verantwortete. Diese Vulkanausbrüche konzentrierten sich auf Indien, das auf dem Globus dem Einschlagsort des Asteroiden in Mexiko gegenüber liegt. Damals brach die Erdkruste in Indien auf und es wurden die Flutbasalte des Dekkan Trapp gefördert. Das Problem: bislang ließ sich die Entstehung des Dekkan trapp nicht genau genug datieren, um mit dem Asteroiden-Impakt korreliert zu werden. Doch das änderte sich nun. Der entscheidende Hinweis kommt tatsächlich aus Deutschland, denn Geologen des Landesamts für Umwelt entdeckten in einer Steilwand eine ganz besondere Gesteinsschicht. In dieser Gesteinsschicht liegen Ablagerungen des Dekkan-Trapp Ausbruchs direkt oberhalb von Gesteinen, die infolge des Asteroideneinschlags entstanden. Diese enthallten das seltene Element Iridium, dass typisch für Impakt-Gesteine ist. Die Ablagerungen des Dekkan-Trapp wurden anhand einer dünnen Schicht mit Vulkanasche identifiziert, die Quecksilber und Tellur enthält, was typisch für die Gesteine des Dekkan Trapp ist.

Gesteinsschicht von Asteroideneinschlag und Vulkanausbruch in den Alpen

Die deutschen Geologen fingen vor 7 Jahren an, nach den Indizien für das Dinosaurier-Aussterben zu suchen, denn bereits seit fast 60 Jahren ist bekannt, dass im Berchtesgadener Land 66 Millionen Jahre alte Gesteine aufgeschlossen sind. Die Gesteine bestehen aus wechselnde Kalk- und Mergelschichten. In diesen Schichten ist eine dünne Lage Material eingelagert, dass nun die neuen Erkenntnisse lieferte. Entdeckt wurde die Schicht im Wasserfallgraben des Lattengebirges. Hierbei handelt es sich um ein Gebirgsmassiv der Alpen, dass zwischen den Gemeinden Bad Reichenhall, Bayerisch Gmain und Berchtesgaden liegt. Nebenan befindet sich das bekanntere Watzmann-Massif.

Weitere Artikel zum Thema:

Dinosaurier: Aufstieg und Untergang
Dinosaurierfund zeugt vom Asteroideneinschlag
Flutbasalt-Eruption löste Klimakatastrophe aus
Massenaussterben durch Flutbasalt-Eruption

Hawaii: Studie postuliert tiefen Magmenkörper

  • Eine neue Studie untersuchte die Magmenentstehung alter Laven auf Hawaii
  • Es wurde eine Lavaprobe gefunden, die aus einer frühen Bildungsphase des Kilaueas stammte
  • Die Forscher kamen zu dem Schluss, dass das Magma in mehr als 90 km Tiefe entstanden sein muss
  • Dort gab es einen großen Magmenkörper

Neue Studie enträtselt frühe Magmenbildung auf Hawaii

Während der Kilauea weiterhin aktiv ist und einen Lavasee im Krater Halema’uma’u beherbergt, versuchen Wissenschaftler seine letzten Geheimnisse zu entschlüsseln. Eines dieser Geheimnisse betrifft die Herkunft der tholeiitischen Magmen, aus denen ein großer Teil der Hawaiianischen Vulkane besteht und in der frühen Bildungsphase der riesigen Schildvulkane eruptiert wurde. Bislang gingen viele Forscher davon aus, dass die Magmen durch partielles Schmelzen von festem Gestein im Grenzbereich Erdkruste-Asthenosphäre entstanden, doch es gibt Hinweise darauf, dass in der frühen Zeit des Vulkans ein anderer Prozess am Werk war: fraktionierte Kristallisation. Darauf deuten neue Analysen von Gesteinsproben hin, die an der submarinen Südostseite von Big Island Hawaii gefunden wurden.

Bei der fraktionierten Kristallisation handelt es sich um einen Prozess, bei dem während der Abkühlung eines Magmas die einzelnen Minerale nacheinander kristallisieren und physikalisch vom Magma getrennt werden. Die chemischen Substanzen der kristallisierten Mineralien werden der Schmelze entzogen, wodurch sich der Chemismus des Magmas ändert.

Bereits vor dem Fund der Proben stellten sich die Forscher die Frage, wie die riesigen Schildvulkane Hawaiis entstanden sein sollen. Die beiden bekannte Magmen-Reservoire, die unter dem Vulkan Kilauea entdeckt wurden und in vergleichsweise geringen Tiefen liegen, können nicht soviel Material bereitstellen, um eine so große Insel wie Big Island hervorzubringen. Daher vermutete man bereits vor der neuen Entdeckung, dass es einen wesentlich größeren Magmenkörper unter der Insel geben muss, von dem aus die Eruptionen gespeist werden. Die Energie bezieht der Magmenkörper aus der Hitze eines Mantelplumes. Dieser soll in der frühen Entstehungsphase Hawaiis große Mengen Schmelze zur Erdoberfläche gepumpt haben.

Die Gesteinsprobe aus dem Südosten der Insel stammt aus der Frühphase der Inselbildung, die vor ca. 280.000 Jahren begann. Vor gut 100.000 Jahren durchbrach die Vulkaninsel die Wasseroberfläche. Die Gesteinsprobe wurde vorher eruptiert. Sie enthält vulkanische Mineralien mit einem hohen Anteil an Elementen aus der Reihe der Seltenen Erden. Das Forscherteam um die australische Geologin Laura Miller von der Monash University, führte experimentelle Forschungen durch, bei denen Gesteine synthetisiert wurden, die den gleichen Chemismus wie die seltene Gesteinsprobe hatten. Die synthetischen Gesteine wurden bei Temperaturen von mehr als 1100 Grad Celsius und unter Drücken von mehr als 3 GPa geschmolzen, um dann zu beobachten, wie sich Kristalle aus der Schmelze bilden, wenn diese sich abkühlt und verringertem Druck ausgesetzt wird. Dabei kamen die Forscher zu dem Ergebnis, dass sich die Originalprobe nur unter Bedingung der fraktionierten Kristallisation von Granat gebildet haben kann. Im Erdinneren herrschen solche Bedingungen in einer Tiefe von 90-150 km. Laura Biller schloss daraus, dass sich in dieser Tiefe ein gigantischer Magmenkörper befunden haben muss, in dem die Schmelze entstand, aus der dann die vulkanische Gesteinsprobe wurde.

Die Autorin der Studie meint dazu, dass „dies die derzeitige Sichtweise in Frage stellt, dass die fraktionierte Kristallisation nur ein oberflächlicher Prozess ist, und legt nahe, dass die Entwicklung einer tiefen Magmakammer ein wichtiges frühes Stadium bei der Entstehung eines hawaiianischen Vulkans ist.“

Andere Vulkane in anderen Teilen der Welt, wie der Vesuv, weisen ebenfalls Kristallbildungszeiten auf, die darauf hindeuten, dass sich unter der Oberfläche „langlebige, tiefliegende“ Magmareservoirs verbergen. Doch die ursprüngliche Magmakammer des Kīlauea scheint viel tiefer zu liegen als die meisten anderen.

(Quelle: Nature)