Shiveluch Livecam

Staat: Russland | Koordinaten: 56.65; 161.36 | Aktivität: Dom

An dieser Stelle gibt es eine Livecam zum russischen Vulkan Shiveluch. Zudem findet ihr die Angaben zur Wärmestrahlung. Am Ende der Seite wird das Monitoring erklärt.

Livecam Shiveluch


Livecam des Vulkans Shiveluch. © KVERT/IVS FEB RAS

Wärmestrahlung am Shiveluch

Wärmesignatur des Vulkans Shiveluch auf Kamtschatka. © MIROVA

Das Monitoring des Shiveluch

Die Vulkane Kamtschatkas werden maßgeblich vom Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky (KSCNET) beobachtet, auch wenn die Taskforce von KVERT (Kamchatka volcano eruption response team) bekannter ist. Diese untersteht KSCNET und wurde 1993 als Joint Venture mehrerer Institute gegründet. Darunter befanden sich auch das AVO und USGS. KVERT veröffentlicht in erster Linie die VONA-Warnungen für den Luftverkehr. Die meisten aktiven Vulkane Kamtschatkas weisen als Subduktionszonen-Vulkane ein hohes explosives Potenzial auf und sind in der Lage hoch aufsteigende Aschewolken zu generieren, die eine Gefahr für Flugzeuge darstellen. So ist es auch beim Shiveluch. Als Dom-bildender Vulkan birgt er noch das Risiko pyroklastischer Ströme.

Der Ort Klyutschi ist die Siedlung, die dem Shiveluch am nächsten liegt. Hier befindet sich ein lokales Observatorium mit Blick auf den Shiveluch. Zwischen Ort und Vulkan liegt nicht nur der Kamtchatka-Fluss, sondern auch 25 km Luftlinie. Doch an klaren Tagen ist der Feuerberg gut sichtbar. Zudem unterstützen einige Instrumente die visuelle Beobachtung des Vulkans. Es gibt mehrere LiveCams und ein Teleskop. Erdbeben und Tremor werden mit Hilfe von 3 seismischen Messtationen registriert. Die Geophone befinden sich im Westen, Süden und Osten des Vulkans. Online-Seismogramme werden leidern nicht veröffentlicht. Grundlegende Informationen findet man aber beim russischen Erdbebendienst EMSD. Zudem werden Messungen via GPS durchgeführt, die den Bodendeformationen auf die Spur kommen sollen.

Satelliten detektieren zudem die Wärmestrahlung. Diese Daten werden bei MODIS und MIROVA angezeigt. Mittels Radar-Interferometrie können ebenfalls Bodenverformungen detektiert werden. Sie liefern Hinweise darauf, ob Magma aufsteigt und sich der Vulkan aufbläht.

Bromo live

Historgramm der Seismik am Bromo. © VSI

 

Wärmesignatur des Vulkans Bromo in der Tengger-Caldera. © MIROVA

Beobachtung des Vulkans Bromo

Die Systematische Beobachtung des Vulkans Bromo unterliegt der indonesischen Behörde VSI/PVMGB. Am rand der Tengger-Caldera liegt ein kleines Obervatorium, in dem die wichtigsten Daten des Vulkans zusammenlaufen. Als ich es im Jahr 2011 besichtigte, war es nur rudimentär ausgestattet. wichtigstes Instrument war ein analoger Trommel-Seismograf. Ein Mitarbeiter überwachte die seismische Tätigkeit und war zudem mit einem Fernrohr ausgestattet. Wichtig ist auch der tägliche Blick auf den Vulkan. Einen funktionierenden Computer konnte ich nicht entdecken, dafür aber eine kleine Wetterstation und einen Funkmast im Hof des Gebäudes. Auf ihm wurde mittlerweile die LiveCam installiert. Wichtige Daten werden per Satellit erfasst.

Neben der wissenschaftlichen Beobachtung der Aktivität, wird der Vulkan von mehreren Priestern im Auge behalten. Der Bromo und die Tengger-Caldera sind spirituelles Zentrum viele Hindus auf Java. Am Fuße des Vulkans liegt eine Tempelanlage. Zu jedem Vollmond im August wird hier das Kasada-Fest abgehalten. Im rahmen der mehrtägigen Zeremonie wird dem Gott Brahma geopfert. Die Gottheit lebt im Krater des Vulkans und forderte einst den erstgeborenen Sohn einer lokalen Prinzessin als Opfer. den Menschen ist der Berg heilig, ebenso den Weisungen der Priester. Nur langsam akzeptiert man die Weisungen der Vulkanologen, die eben keinen göttlichen Status haben.

Wer als Tourist zum Bromo kommt, kann ihn in aktiven Zeiten bequem vom Fenster einer Lodge aus beobachten. Eine Terrasse am Calderarand bietet ein schönes Panorama und ist ein guter Standpunkt für Fotografen. Junge Männer mit Motorroller bieten Fahrten zu höher gelegenen Teilen des Calderarandes an.

Sakurajima Livecam

Staat: Japan | Koordinaten: 31.581, 130.659 | Aktivität: Explosiv

Seiteninhalt: Livecam und Livestream vom japanischen Vulkan Sakurajima. Außerdem geophysikalische Daten in der Liveansicht. Erklärungen zum Monitoring am Sakurajima.

Sakurajima-Livecam

MBC-Livecam vom Sakurajima. Um ein neues Bild zu laden, bitte die Seite aktualisieren.

Sakurajima-Livestream

Livecam des Vulkans Sakurajima auf der japanischen Insel Kyushu. Es handelt sich um ein youtube-Livestream von MBC.

Sakurajima-Seismik

Das obere Diagram zeigt die seismische Aktivität unter dem Sakurajima an. Die untere Grafik zeigt die Anzahl explosiver Eruptionen. Erfasst sind die letzten 2 Monate. © IMO

 

Übersicht der Daten der letzten 2 Jahre. © JMA

 

Thermalimage des Sakurajimas. © MIROVA

Monitoring am Sakurajima

Der Sakurajima zählt zu den am besten überwachten Vulkanen der Welt. Die Überwachung der Vulkane unterliegt der Japanischen Meteorologieagentur (JMA), die neben dem Wetter auch für andere Naturerscheinungen verantwortlich ist. Ein dichtes Netzwerk aus den modernsten Beobachtungsinstrumenten wurde von den Wissenschaftlern des Observatoriums geschaffen. Zu den Instrumenten gehören Geophone, die die Erdbeben aufzeichnen. Mikrofone registrieren von Explosionen ausgehenden Schall. GPS Geräte und Tiltmeter beobachten die Bodendeformation. Laser messen die Distanzen zu verschiedenen Messpunkten am Vulkan. Mehrere Kameras, darunter hoch-lichtempfindliche Spezialkameras, unterstützen visuelle Beobachtungen. Zudem gibt es ein Reihe von mobilen Geräten, die auf Fahrzeugen montiert sind. Zu ihnen gehören z.B. Sensoren zur Gaserfassung. Natürlich gibt es internationale Kooperationen zu anderen Forschungseinrichtungen, die Messkampagnen am Vulkan durchführen. Last, but not least wird der Vulkan von Satelliten überwacht.

Am Fuße des Vulkans wurde ein modernes Betongebäude errichtet, in dem sich das Observatorium befindet. Es liegt auf der Südwestseite des Inselvulkans, direkt neben ein betoniertes Flussbett, durch das Lahare geleitete werden. Am Sakurajima gibt es eine Menge Verbauungen, die die Anwohner vor den Unbilden des Vulkans schützen sollen. Im Südwesten der kleinen Insel wurde eine ganze Schwemmebene mit Deichen und Betonbarrieren eingefasst.

Die Daten des lokalen Observatoriums laufen in einem der 4 großen Vulkanologischen Zentren des JMA zusammen. Diese befinden sich in Fukuoka, Sapporo, Sendai und Tokio. Das Zentrum in Fukuoka ist für die Insel Kyushu zuständig, auf der sich auch der Sakurajima befindet. Insgesamt gibt es in Japan 110 Vulkane, die als potenziell aktiv eingestuft werden. 47 Feuerberge werden permanent überwacht, wie es am Sakurajima der Fall ist.

Weitere Informationen zur Überwachung japanischer Vulkane gibt es in dieser Broschüre.

Ebeko Livecam

Staat: Russland | Koordinaten: 50.68, 156.01 | Aktivität: Ascheeruption

Livecam Ebeko

Ebeko Livecam auf Pamushir Island. © emsd.ru

Livecam des Vulkans Ebeko auf der Kurileninsel Paramushir. Um ein neues Bild zu laden, bitte die Seite aktualisieren. ©emsd.ru

Wärmestrahlung des Vulkans Ebeko. © MIROVA

Monitoring am Ebeko

Der Ebeko ist ein aktiver Stratovulkan auf der Insel Paramushir, die zur Kurilenkette gehört. Die Kurilen sind eine Inselkette vulkanischen Ursprungs, die sich zwischen Russland und Japan erstreckt und einen vulkanischen Inselbogen bildet.
Ebeko ist einer der aktivsten Vulkane in dieser Region und hat in der Vergangenheit zahlreiche Ausbrüche erzeugt. Es gibt Phasen mit häufigen Ascheeruptionen, und in den Eruptionswolken können vulkanische Gewitter auftreten. Das ist insofern ungewöhnlich, als dass es normalerweise nur in deutlich größeren Aschewolken blitzt.

Der Ebeko liegt etwa 7 km von Severo-Kurilsk entfernt, wo sich ein örtlicher Flughafen befindet. Aschewolken des Vulkans könnten tieffliegende Flugzeuge gefährden. Das direkte Umfeld des Vulkans ist jedoch nicht besiedelt.

Die Überwachung des Vulkans obliegt dem russischen Institut für Vulkanologie und Seismologie FEB RAS und wird von Mitarbeitern der Sondereinsatzgruppe KVERT durchgeführt. Vor Ort gibt es eine LiveCam, die oben eingebunden ist, aber anscheinend sind nur wenige (oder gar keine) weitere Instrumente installiert.

Neben visuellen Beobachtungen wird der Vulkan hauptsächlich mithilfe von Satelliten-Fernerkundungsinstrumenten überwacht. Dazu gehören Radarmessungen der Aschewolken, InSAR-Detektion der Bodenhebung und Wärmemessungen im Infrarotspektrum. Die Satelliten verfügen auch über Spektrometer, mit denen Gaswolken erkannt werden können, insbesondere Schwefeldioxid-Wolken. Dieses Gas kann in aerosolform bis in die Stratosphäre aufsteigen und unter bestimmten Umständen zu einer Verringerung der Sonneneinstrahlung und somit zu einem Temperaturrückgang beitragen. Es ist jedoch nicht bekannt, dass der Ebeko in ausreichend großen Mengen Schwefeldioxid ausstößt, um das Klima zu beeinflussen. Es gilt jedoch die allgemeine Regel, dass viele Tropfen ein Fass füllen.

Ätna Livecam

Staat: Italien | Koordinaten: 37.73, 15.00 | Aktivität: Strombolianisch

Livecam am Ätna

Die Thermal-Livecam steht auf der Montagnola und zeigt den Gipfelbereich des Ätnas. Blickrichtung ist Norden. © INGV

Tremor des Vulkans Ätna

Die Grafik zeigt den Tremor einer Messstationen am Ätna. © INGV

Wärmesignatur des Ätnas

Wärmestrahlung des Vulkans Ätna auf Sizilien. © MIROVA

Überwachung des Vulkans Ätna

Der Ätna zählt zu den am Besten überwachten Vulkanen der Welt. Ein Grund hierfür ist seine dichte Besiedlung und die Nähe zur Großstadt Catania, die in historischen Zeiten bereits 2 Mal von Ausbrüchen in Mitleidenschaft gezogen wurde. Hauptverantwortlich für das Monitoring zeigt sich das INGV Catania, aber auch andere Institute wie das LGS Florenz haben Messinstrumente installiert.

Das INGV (National Institute of Geophysics and Volcanology) ist aus einer Fusion zweier Einrichtungen hervorgegangen: 1999 schlossen sich das „Poseidon System“ und das „Internationale Institut für Vulkanologie“ zusammen. Letzteres wurde bereits 1969 gegründet und überwachte die sizilianischen Feuerberge. Poseidon war in erster Linie für die Erdbebentätigkeit Ostsiziliens verantwortlich.

Das INGV arbeitet eng mit der Katastrophenschutzbehörde zusammen und wird von verschiedenen Fördereinrichtungen unterstützt. Das INGV Catania beschäftigt mehr als 100 Mitarbeiter. Alle Fäden der Überwachung laufen im Operationszentrum zusammen. Der langgestreckte Raum ist mit Monitoren gespickt und ist rund um die Uhr besetzt. Im Notfall können die Wissenschaftler von hier aus schnell Alarm schlagen.

Die Geräte und Messstationen am Ätna

Der Ätna ist mit Hightech gespickt. Auf Schritt und Tritt stolpert man über massive Stahlkisten die von Solarzellen beschirmt sind. Richtfunk-Antennen weisen den Weg Richtung INGV, wo alle Daten gesammelt und interpretiert werden. Einige Instrumente speichern ihre Daten aber auch intern und müssen vor Ort ausgelesen werden. Auf der Karte rechts sind im Bereich des Ätnas mehr als 100 Stationen eingezeichnet. Es gibt Kameras, Seismometer, Gravimeter, Magnetometer, Tiltmeter, Gassonden, Beschleunigungssensoren, Infraschall-Mikrofone, Strainmeter und vieles mehr. GPS Punkte dienen zur Erfassung der Inflation. Zudem halten verschiedene Satelliten ihre Kamera-Augen und Sensoren auf den Vulkan gerichtet. Regelmäßig finden Hubschrauberflüge statt, um den Vulkan zu inspizieren. Trotz des immensen Aufwands ist es nach wie vor schwer Vulkanausbrüche längerfristig vorherzusagen. Oft wissen die Vulkanologen nur Stunden, oder Minuten vor einem Ausbruch bescheid, dass etwas im Busch ist. Allerdings kann man längerfristige Trends erkennen und weiß, ob der Vulkan zu einer Eruption bereit ist. Das zeigt, wie komplex die Vorgänge im Inneren eines Vulkans sind.

Krakatau live

Hier seht ihr aktuelle live-Daten vom Krakatau in Indonesien. Um neue Bilder zu laden, bitte auf diesen Link klicken. Leider lässt sich die Cam nicht mehr einbinden. Ihr findet sie hier.

Wärmesignatur des Krakataus. © MIROVA

Anak Krakatau: Monitoring

Die professionelle Observierung des Vulkans Krakatau war von jeher eine Herausforderung. Das Archipel ist unbewohnt und von daher fehlt jegliche Infrastruktur. Es müssen autarke Messstationen installiert werden, nebst eigener Stromversorgung via Solarzellen und Datenübertragung zum Observatorium an der Küste von Java. Das ist immerhin 50 km entfernt. Hinzu kommt, dass die Geräte unbewacht im Gelände stehen und vor Vandalismus und Diebstahl ungeschützt sind. Selbst Zäune und Masten werden kurzerhand demontiert und das Metall zu Geld gemacht. Es müssen praktisch ständig Anlagen erneuert und ersetzt werden. Neben anthropogenen Einfluss ist da natürlich noch der aktive Vulkan, der oft explosiv tätig ist und seine glühende Fracht mehrere Kilometer weit auswerfen kann. Messinstrumente und Solaranlagen werden auf Anak Krakatau häufig von Ausbrüchen zerstört.

Indonesien hat viele Vulkane, die es zu überwachen gilt und das Budget ist limitiert. So werden oft veraltete analoge Messinstrumente eingesetzt. Erst jetzt wird langsam digitalisiert. Im kleinen Observatorium an der Westküste Javas rotierte noch vor wenigen Jahren die Trommel eines alten Seismometers. Viel mehr an aktuellen Daten gab es dort nicht. In Zusammenarbeit mit dem GFZ-Potsdam wurde ein modernes Netzwerk errichtet. Im Jahr 2009 gab es sogar für einige Monate eine Livecam, bis sie dann geklaut wurde. Erst nach dem Kollaps von 2018 wurde eine neue Kamera installiert. Sie steht auf dem Gipfel des Vulkans und blickt auf den Krater hinab. Mit ihr verrichten nun zeitgemäße Seismometer inklusive Inklinometer ihren Dienst. Feste GPS-Punkte ermöglichen eine genaue Vermessung der Insel.

Yasur live

Livecam Yasur

Livecam vom Yasur auf Vanuatu. © VMGD

Livecam und Seismik vom Yasur auf Vanuatu. Die Daten stammen vom VMGB. Es erscheinen nur alle 15 Minuten neue Bilder. Um neue Bilder zu laden, bitte die Seite aktualisieren.

Seismogramm Yasur

Live-Seismogramm des Vulkans Yasur. © VMGD

Sinabung live

Wärmestrahlung vom sinabung. © MIROVA

Monitoring Sinabung

Die Observierung des Vulkans Sinabung obliegt dem VSI (Volcanological Survey Indonesia), das dem PVMGB unterstellt ist. Im Ort  Simpang Empat (Karo-Regierungsbezirk) wurde ein kleines vulkanologisches Observatroium eingerichtet, in dem die Fäden der verschiedenen Messstationen am Vulkan zusammenlaufen.

Mit den ersten Anzeichen des Erwachens, wurde das Instrumentennetzwerk um de Vulkan stark ausgebaut. Das Geschah unter Zusammenarbeit der indonesischen Vulkanologen mit dem USGS-USAID-Vulkan-Katastrophenhilfsprogramm und dem Forschungsinstitut für Katastrophenvorsorge der Universität Kyoto. Das ursprünglich rudimentäre seismische Netzwerk wurde stark ausgebaut und auf 6 Breitband-Stationen aufgerüstet, von denen eine am Nachbarvulkan Sibayak installiert wurde. Ein 7. seismisches Messgerät (ein Einkomponenten-Kurzzeit-Seismometer) wurde in der Nähe der Stadt Sukanulu installiert. Dieses Seismometer ist die Referenzstation für die Ereignisklassifizierung.

Im Jahr 2011 kamen weitere Stationen dazu. Hierzu zählten geodätische Messstationen mit Inklinometer und GPS-Punkten, Gas-Spektrometer. In regelmäßigen Abständen werden Lava- und Gasproben am Vulkan entnommen und im Labor untersucht. Die Fernerkundung wird via Satellit durchgeführt. Gelegentlich werden ferngesteuerte Flugzeuge, bzw. Drohen eingesetzt.

Da der Vulkan über 100 Jahre lang ruhte und niemand mit einer Eruption gerechnet hatte, ist die unmittelbare Umgebung des Vulkans dicht besiedelt werden. Mit seinem Erwachen im Jahr 2010 änderte sich das schlagartig. Mehrere Dörfer wurden evakuiert, da sie im direkten Wirkungskreis pyroklastischer Ströme lagen. Einige Siedlungen wurden zerstört und mussten dauerhaft aufgegeben werden. Für die Vulkanologen stellte der Vulkan eine gutes Studienobjekt dar und es wurden viele moderne Verfahren erprobt, darunter die seismische 3d-Tomografie.

Der Sinabung förderte einen Lavadom, von dem zähe Lavaströme abgingen. An Front und Seite der Lavaströme kam es zu Kollapsereignissen und es entstanden pyroklastische Ströme. Wissenschaftlich wurden sie hier erstmals beschrieben und heißen seitdem werden entsprechende Eruptionen als „Sinabung Typ“ beschrieben.  Im Jahr 2019 beruhigte sich der Vulkan wieder. Seitdem ist er nur seismisch aktiv.

Piton de la Fournaise: Eruption hat begonnen

Update 04.04.2018: Die Eruption am Piton de la Fournaise ist bereits wieder vorbei! Es war eine der Kürzesten in der Geschichte des Vulkans. Die Vulkanologen äußern sich nicht, ob sie mit einem Wiederaufleben des Vulkanausbruchs rechnen. Auf jeden Fall wird kein Tremor mehr registriert. Nur wenige Menschen sahen den Ausbruch. Das Gebiet ist nur schwer zugänglich, besonders, da ein Erdrutsch einen Pfad verschüttete, der entlang des Calderarandes Richtung Nez Coupé de Sainte-Rose führt. Die Spalte verläuft entlang des östlichen Calderarandes, welcher vor langer Zeit vermutlich kollabierte. Der Alarmstatus „1“ wird aufrecht gehalten, der Zugang zu Caldera ist gesperrt. Eine Bilderstrecke gibt es hier.

Update 22.00 Uhr: Fotos der Eruption zeigen, dass die Eruptionsspalte länger ist, als man auf dem Video unten erkennen kann. Entweder zeigt das Video nur einen Abschnitt der Spalte, oder diese Vergrößerte sich im Laufe des Tages. Sie besteht aus mehreren Segmenten entlang der nordöstlichen Steilflanke ins Grand Brulé und ist mehrere hundert Meter lang. Es bildeten sich bereits erste Schlackenkegel auf der Spalte. Lavaströme fließen über den Hang. Bisher wird vergleichsweise wenig Lava gefördert.

Update 13.00 Uhr: Mittlerweile gibt es ein erstes Video der Eruption. Diese ist bisher vergleichsweise klein: die Spalte ist keine 100 m lang und es werden niedrige Lavafontänen gefördert. Das Wetter ist bescheiden und auf den Livecams sieht man nichts.

Originalmeldung: Der Piton de la Fournaise brach heute um 11 Uhr Ortszeit aus. Der Vulkanausbruch begann nach einer kurzen seismischen Krise. Viele Informationen liegen noch nicht vor, aber scheinbar öffnete sich eine Eruptionsspalte auf der Nordseite der Caldera Enclos Fouqué. Die Spalte liegt in der Nähe des Nez Coupé auf der Seite, die Richtung Sainte-Rose zugewandt ist. Bisher spielt sich die Eruption in der Caldera ab. Allerdings ist sie nach Osten offen und bei einem größeren Ausbruch besteht die Gefahr, dass Lavaströme die Küstenregion erreichen.