Studie schreibt Rolle des magmatischen Kohlendioxids neu

Studie will Kohlendioxid als treibende Kraft des Aufstiegs basaltischer Magmen identifiziert haben

Eine kürzlich veröffentlichte Studie könnte möglicherweise einen Paradigmenwechsel in der Vulkanologie einleiten: Bisher gingen Vulkanforscher davon aus, dass Wasserdampf eine wesentliche Rolle beim Aufstieg von Magma spiele und Kohlendioxid lediglich ein Begleitgas sei. Doch nun hat ein Team von Forschern der amerikanischen Cornell-Universität herausgefunden, dass Kohlendioxid eine bedeutendere Rolle spielt als bisher angenommen. Wasser und Kohlendioxid existieren im Erdmantel in Form von Flüssigphasen und können je nach Druck- und Temperaturbedingungen verschiedene Aggregatzustände annehmen. Sie beeinflussen die Dichte und Fließeigenschaften der Schmelze und wirken sich auf den Druck innerhalb eines Magmakörpers aus, was letztlich den Aufstieg und das eruptive Verhalten des Magmas beeinflusst.

Bisher wurde Kohlendioxid zwar als eine Komponente betrachtet, die dazu beiträgt festzustellen, ob eine Schmelze in die Erdkruste eindringt und aufsteigt. Oft bleibt ein Magmakörper in der Erdkruste stecken und differenziert, bevor es zum endgültigen Aufstieg des Magmas und zum Vulkanausbruch kommt. Im Magmakörper finden chemische und physikalische Prozesse statt, bei denen Kristalle und Flüssigphasen entstehen. Irgendwann steigt der Gasdruck im Magmakörper so stark an, dass die Schmelze aufsteigt und ausbricht. Allerdings bildet sich nicht bei jedem Vulkanausbruch Monate oder Jahre vorher ein Magmakörper in der Erdkruste. Besonders bei Vulkanen, die basaltisches Magma ausstoßen und nicht an Kontinentalrändern liegen, wurde in den letzten Jahren beobachtet, dass die Schmelze direkt aus dem Erdmantel aufzusteigen scheint. Bei einigen dieser Eruptionen trat zuerst eine magmatische Ganggesteinsintrusion auf, die in den ersten Tagen des Ausbruchs leer lief. Das anschließend aufsteigende Magma stammte aus Tiefen von mehr als 20 km und schien direkt ohne Unterbrechung in der Erdkruste aufzusteigen. Dies wurde bei der ersten Eruption am isländischen Fagradalsfjall, auf La Palma und Hawaii sowie am Pico do Fogo auf den Kapverdischen Inseln beobachtet.

Die Forscher um den Studienleiter Esteban Gazel untersuchten Proben dieses Vulkanausbruchs, bei dem im Jahr 2014 eine ganze Ortschaft dem Erdboden gleichgemacht wurde. Sie verwendeten eine neu entwickelte Methode zur Quantifizierung winziger Flüssigkeitseinschlüsse in Kristallen. Diese Methode basiert auf einer Weiterentwicklung der Raman-Spektroskopie und nutzt eine Laser-Mikrosonde. Gazel vergleicht die untersuchten Fluideinschlüsse mit Zeitkapseln, die Aufschluss über die Entstehungsgeschichte des zugrunde liegenden Magmas geben können. Es stellte sich heraus, dass die Fluideinschlüsse deutlich mehr Kohlendioxid als Wasser enthielten. Daraus schließen die Forscher, dass eben dieses Kohlendioxid eine entscheidende Rolle in den eruptiven Prozessen gespielt hat.

In Zukunft könnte Kohlendioxid also eine größere Rolle bei der Vorhersage von Vulkanausbrüchen spielen. Dies gilt insbesondere für basaltische Intraplattenvulkane, die oft über sogenannten Hotspots liegen. Übrigens zählen auch die Vulkane der Eifel zu diesen Vulkanen. Besonders am Laacher-See-Vulkan tritt vulkanisches Kohlendioxid aus. Die neue Studie könnte somit eine Grundlage dafür liefern, den Vulkanismus in der Eifel neu zu bewerten.

Was ist ein Vulkan?

Vulkane sind Öffnungen in der Erdkruste aus denen Lava und vulkanische Gase aus dem Erdinneren entweichen. Das entweichen der Lava wird als Vulkanausbruch, oder Eruption bezeichnet. In bewohnten Gegenden kann ein Vulkanausbruch katastrophale Wirkungen haben und Menschen gefährden.

Ein Vulkan wächst

Die Austrittsstellen von Lava und Gas werden als Schlot, Krater, Spalte, Bocce oder Fumarole bezeichnet. Aus Letzteren entweichen nur Gase. Um die Austrittsstelle in der Erdkruste lagert sich die entweichende Lava ab und lässt so einen Vulkan wachsen. Fein fragmentierte Lava wird Vulkanasche genannt. Sie kann hoch in die Atmosphäre aufsteigen und mit dem Wind verfrachtet werden. Die austretenden Gase vermischen sich mit der Atmosphäre. Aus den Gasen können auch Mineralien wie Schwefel kristallisieren, welche sich um die Austrittsöffnung ablagern.

Lava ist eine weitgehend entgaste Gesteinsschmelze und erstarrt während der Abkühlung zu festem Gestein. Dieses Gestein wird als Vulkanit bezeichnet und baut das eigentliche Vulkangebäude auf. Es gibt unterschiedliche Lava-Arten aus denen verschiedene Vulkanite entstehen.

Schematische Darstellung eines Stratovulkans mit einer vulkanianischen Eruption. © fotoliaVulkane dienen dem System Erde als Überdruckventile und stabilisieren damit die feste Erdkruste. Zudem fördern sie wichtige Stoffe aus dem Erdinneren an die Oberfläche.

Ihre Gase und Aerosole helfen das Klima zu regulieren und schwitzen neben Kohlendioxid viel Wasserdampf aus. Die Lava ist reich an Mineralstoffen, welche den Boden in Vulkannähe besonders fruchtbar machen.

Ein Vulkan kann unterschiedliche Formen annehmen, welche stark von der Art der Lava abhängt, aus denen der Vulkan besteht. Der Typ des Vulkanausbruchs hängt maßgeblich vom Magma ab.

Weiterlesen …

Vulkanologie: neuer Auslöser von Eruptionen entdeckt

Einem internationalen Team von Wissenschaftlern der Universitäten von Liverpool, Monash und Newcastle ist es gelungen einen weiteren Auslöser von Vulkanausbrüchen zu entschlüsseln. Die Wissenschaftler sagen, dass das Verständnis von Auslösemechanismen der Eruptionen enorm dazu beiträgt Vulkanausbrüche vorherzusagen. Eine präzise Vorhersage hilft den Schaden zu minimieren, der durch Vulkanausbrüche entstehen kann: weltweit leben mehr als 600 Millionen Menschen im Umfeld aktiver Vulkane. Alleine durch die Eyjafjallajökull-Eruption im Jahr 2010 entstand durch Flugausfälle ein wirtschaftlicher Schaden von 1,8 Milliarden USD.

Diese senkrecht verlaufenden Gesteinsrippen nennt man Dykes, oder Magmatischen Gang. Sind sie um 90° gedreht bilden sie flache bänge und werden Sills genannt. © Marc Szeglat
Diese senkrecht verlaufenden Gesteinsrippen (Bildmitte) nennt man Dykes, oder Magmatische Gänge. Sind sie um 90° gedreht bilden sie flache Bänke und werden Sills genannt. © Marc Szeglat

Da die wenigsten Prozesse die im Erdinneren ablaufen direkt beobachtet oder gemessen werden können, entwickeln die Forscher immer neue Modelle und Computersimulationen. Die Wissenschaftler der drei genannten Universitäten schufen ein Vulkanmodel in dem sie speziell das Verhalten von Magma im Fördersystem untersuchen wollten. Dazu füllten sie Gelatine in einem Tank und injizierten gefärbtes Wasser in die Masse. Mittels Zeitlupenkamera und Laser beobachteten sie das Bewegungsverhalten des Wassers (Magmas) in miteinander verbundenen Frakturen, die zuvor in der Gelatine modelliert wurden. Die vertikal verlaufenden Risse heißen in der Fachsprache Dykes, die Horizontalen werden Sills genannt. Letztere bilden eine flach liegende Fläche im Gestein, die man mit einem Kohleflötz vergleichen kann. Die Sills füllen sich mit Magma, wenn der vertikale Aufstieg des Magmas in den Dykes ins Stocken kommt. Neu ist die Beobachtung, dass es im Magma in den Dykes zu einem plötzlichen Druckabfall kommt, wenn es seitwärts in die Sills abfließt. Dadurch wird der altbekannte Prozess in Gang gesetzt, der schon seit langem als Auslöser explosiver Eruptionen bekannt ist: Druckentlastung. Durch den hydrostatischen Druckabfall bilden sich schlagartig Gasblasen im Magma. Unter hohem Druck war das Gas bislang im Magma gelöst. Die aufsteigenden Gasblasen lassen das Magma aufschäumen und der Gasdruck treibt es durch den Förderschlot. Der Vulkan bricht aus. Diesen Vorgang kann man einfach nachvollziehen, wenn man eine gut geschüttelte Sektflasche öffnet. Der Korken knallt raus und das Kohlendioxidgas treibt den aufgeschäumten Sekt (Lava) aus dem Flaschenhals (Vulkanschlot).

Doch was nützen diese Erkenntnisse aus dem Labor bei der Vorhersage von Vulkanausbrüchen? Schließlich kann man die Prozesse im Erdinneren nicht visuell beobachten. Doch die Wissenschaft entwickelt immer genauere Messverfahren um den Vulkanen den Puls zu fühlen. In erster Linie geben die verschiedenen Arten von Erdbebenwellen Auskunft über das Geschehen im Erdinneren. Vulkanische Erdbeben zeigen an das Gesteine bersten und Risse entstehen. Tremor (beständiges Zittern des Bodens) wird durch die Bewegung von Fluide (Flüssigkeiten, Gas, Magma) ausgelöst. Mittels GPS Messungen von Satelliten lassen sich kleinste Bodendeformationen beobachten. Aufwölbungen im Boden zeigen, wo sich Magma sammelt und wie es sich bewegt. Wichtig sind auch Gasmessungen. Ändern sich der Gasfluss und das Verhältnis bestimmter Isotope, dann kann Magma auf dem Weg sein.

Das Alles macht aber auch deutlich, wie schwierig eine verlässliche Prognose eines bevorstehenden Vulkanausbruches ist. Jahrzehntelanges Studium ist nötig, um die Anzeichen richtig zu deuten, zumal Vulkane Individualisten sind. Die neuen Erkenntnisse lösen das Puzzlespiel der Dynamik eines Vulkanausbruches ein wenig besser auf und helfen den Wissenschaftlern das System Erde besser zu verstehen. Dennoch ist es oft schwierig die komplexen Abläufe der Erddynamik mit einfachen Modellen zu simulieren. Eine 1:1 Übertragung der neuen Erkentnisse auf bevorstehende Vulkanausbrüche dürfte schwierig sein und nicht immer gelingen.

Quelle: Das Wissenschaftsteam veröffentlichte die Ergebnisse ihrer Arbeit in der Online-Zeitschrift geology.com.

Anmerkung: der Begriff Dyke, bzw. Magmatischer Gang tauchte oft in der Berichterstattung zur Holuhraun-Eruption am Bardarbunga auf.

Bildergalerie Vulkanismus

Die Grafiken dieser Bildergalerie stellen die wichtigsten Zusammenhänge der Erddynamik im Zusammenhang mit dem Vulkanismus dar: Motor für den Vulkanismus sind die Konvektionsströme im Erdinneren. Diese lassen die Kontinente wandern und durchmischen die plastischen Gesteine im Erdmantel.

Die meisten Vulkane entstehen an den aktiven Kontinentalrändern und entlang von Riftsystemen. Zu den Intraplattenvulkanen zählen die Hotspot-Vulkane wie der Kilauea auf Hawaii und die Yellowstone-Caldera. Dort brennen sich ein Mantelplumes durch die Erdkruste. Die häufigsten Vulkanarten sind Stratovulkane und Schildvulkane. Besonders gefährlich sind Domvulkane und subglaziale Vulkane unter dem Eis der Gletscher.

Wissenschaft: von Ziegen und Drohnen

Deutsche Forscher arbeiten derzeit an 2 interessanten Projekten, um den Vulkane besser den Puls zu fühlen:

Die traurigen Überreste einer Ziege am Ätna. © Marc SzeglatDer Biologe Prof. Martin Wikelski benutzt Ziegen als tierische Frühwarnsysteme zur Vorhersage von Vulkanausbrüchen. Am Ätna beobachtete er Ziegen, die schon einige Zeit vor einer Eruption unruhig wurden und Deckung suchten. Diese tierischen Instinkte wollte Wikelski nutzbar machen und er rief das Projekt „Disaster Alert Mediation using Nature“ (kurz Damn) ins Leben. Er stattet Ziegen am Ätna mit GPS-Halsbändern auf und restellte Bewegungsprofile, anhand derer er das Verhalten der Tiere untersuchte. Wikelski stellte fest, dass die Ziegen tatsächlich vor eine Vulkanausbruch flüchteten. Jetzt wird geprüft, ob das Ziegenfrühwarnsystem auch anderswo funktioniert. (Quelle nationalgeografic.de)

Bei der 2. Meldung spielen Drohnen eine Rolle. Allerdings sind hier keine faulen Bienenmännchen gemeint, sondern fleißige Flugroboter. Wissenschaftler um Professor Wolfgang Rüther-Kindel sind dabei, eine Drohne zu entwicken, die in Aschewolken von Vulkanausbrüchen fliegen soll um Daten zu sammeln. Die Drohne verfügt über Elektromotoren und soll selbständig mehrere Stunden auf 5000 m Höhe operieren können. Die Drohne könnte z.B. auf Island zum Einsatz kommen. Das Projekt wird vom Bundesforschungsministerium mit 324.000 € gefördert. (Quelle: Lausitzer Rundschau)