A B C D E F G H I J K L M N O P Q R S T U V W X Z

Stratovulkan

Stratovulkane haben steile Flanken und bestehen aus Wechsellagen lockeren Gesteins (Tephra) mit festen Lavaströmen. Während die Tephra explosiv gefördert wurde, bildet die Lava massive Bänke und wurde effusiv eruptiert. Der Begriff „stratum“ stammt aus dem Lateinischen und bedeutet Schicht. Daher werden Stratovulkane werden auch Schichtvulkane genannt.

Stratovulkane sind typisch für Vulkane entlang von Subduktionszonen, die ein intermediäres-saures Magma produzieren. Es hat meistens einen Silizium-Gehalt zwischen 55% und 60%. Obwohl diese Vulkane schon dem „grauen“, d.h. überwiegend explosiven Vulkanismus zugeordnet werden, können auch Lavaströme entstehen. Die Ströme legen häufig nur geringe Entfernungen zurück und bewegen sich auf den Vulkanflanken.  Bei den explosiven Eruptionen werden Pyroklastika eruptiert. Dabei kann es sich um Asche, Lapilli und Blöcke handeln. Große explosive Eruptionen transportieren die Aschen über weite Strecken und tragen das Material bis in die Stratosphäre hinauf. In Vulkannähe lagern sich mächtige Ascheschichten ab, teilweise können diese auch durch pyroklastische Ströme abgelagert werden. Regenfälle verursachen Lahare, die ebenfalls zur Wechsellagerung Gesteinsschichten beitragen. Die steilen Flanken von Stratovulkanen sind oft von Erosionsrinnen und Schluchten durchfurcht.

Typischerweise verfügen Stratovulkane über einen Gipfelkrater, aus dem die meisten Eruptionen erfolgen. Ist die geförderte Lava-Art hochviskos, können Lavadome im Krater wachsen. Stratovulkane die weniger viskose Lava fördern können auch Eruptionsspalten bilden, aus denen zähe Lavaströme eruptieren. Diese können auch von flachen Lavadomen abgehen, sobald sie über den Kraterrand quellen. Stratovulkane sind auch für langanhaltende milde explosive Tätigkeit bekannt, die dann strombolianische Eruptionen erzeugt. Genauso gut kann es lange Eruptionspausen geben.

Besonders nach Plinianischen Eruptionen kann sich der Gipfelkrater zu einer Caldera erweitern. In Extremfällen kollabiert ein Großteil des Stratovulkans, wie es sich bereits mehrfach am Krakatau in Indonesien zugetragen hat. Dramatisch waren auch die Eruptionen am Tambora und Mount St. Helens: Beide Vulkane haben mindestens 1/3 ihrer Höhe eingebüßt, als ihre Gipfel kollabierten.

Sonderformen von Schichtvulkanen

Das Eruptionszentrum eines Schichtvulkans kann sich verlagern. Ein Grund hierfür könnte die Bildung eines Schlotpfropfens sein, so dass sich aufsteigendes Magma einen neuen Weg suchen muss. So kann ein Nebenkrater entstehen, der im Laufe der Zeit zu einem neuen Gipfelkrater heranwächst. Dann entsteht ein Doppelvulkan. Bleibt der neue Vulkan kleiner als der Urvulkan, spricht man von einem Flankenvulkan, oder Adentiv-Vulkan. Denkbar ist auch ein Flankenkollaps, und der Bildung eines neuen Vulkans in der Wunde des Alten.

Bildet sich in einer Gipfel-Caldera ein neuer Vulkankegel nennt man den Vulkan Sommavulkan. Namensgebend ist die Somma-Caldera, in der sich der https://www.vulkane.net/vulkane/vesuv/vesuv.htmlVesuv bildete. Dort sieht man nur noch einen Rand der Caldera, so dass der Vesuv aus der Ferne wie ein Doppelvulkan ausschaut.

Strombolianische Eruption

Als strombolianische Eruption bezeichnete man eine Ausbruchsart, welche durch frequenten Schlacken-Auswurf gekennzeichnet ist. Es ist eine milde explosive Ausbruchsform und hat auf dem Vulkan-Explosivitäts-Index die Ordnungszahl 1-2.  Diese Eruptionsform ist nach dem Vulkan Stromboli benannt, da sie dort als erstes beobachtet und beschrieben wurde. Der Stromboli ist ein Vulkan in Italien und gehört zum Archipel der Liparischen Inseln.

Charakteristisch für strombolianische Eruptionen ist, dass sie in relativ kurzen Intervallen auftreten. Am Stromboli liegen meistens nur wenige Minuten zwischen den einzelnen Ausbrüchen.  Nur selten liegen mehrere Stunden zwischen den Explosionen. Glühende Tephra wird meistens zwischen 50 und 150 m hoch ausgeworfen. Vereinzelt gibt es Explosionen die bis zu 300 m hoch auswerfen. Neben den glühenden Lavabrocken wird auch Vulkanasche gefördert. Diese kann mehrere Hundert Meter aufsteigen. Am Stromboli hält diese Art der Tätigkeit seit Jahrtausenden an. Die strombolianische Aktivität kann sich steigern und wird oft vor größeren paroxysmalen Eruptionen beobachtet. Kommen die strombolianischen Eruptionen ohne Pause direkt hintereinander entstehen Lavafontänen.

Die geförderte Tephra fällt zum großen Teil in den Krater zurück, oder landet auf der Außenflanke des selbigen. So wachsen schnell Schlackenkegel, die relativ instabil sind. Die Kraterregion von Vulkanen, die strombolianisch eruptieren ändern sich schnell. teilweise gehen die Änderungen mit Kollaps-Ereignissen einher.

Entstehung strombolianischer Eruptionen

Voraussetzung für strombolianische Eruptionen ist ein Magma, welches eine moderate Viskosität aufweist. Oft sind das andesitische Basalte, oder basaltischer Andesit. In der Schmelze bilden sich bereits Kristalle wie Olivin, Pyroxen und Amphibol. Als Motor hinter den strombolianischen Eruptionen vermutet man den Prozess der Zwei-Phasen-Konvektion: das Magma steigt im Förderschlot auf, bis der Gasdruck im Magma größer wird, als der Druck des auflastenden Materials.  Dann entweicht das Gas aus dem Magma und sammelt sich in großen Blasen, die im Förderschlot aufsteigen. An der Schlot-Öffnung platzen diese und schleudern das Material explosionsartig heraus. Durch die Entgasung des Magma ändert sich die Dichte des Schmelze und diese sinkt wieder im Förderschlot ab. Es erwärmt sich erneut und beginnt wieder aufzusteigen. So soll ein Kreislauf entstehen. Allerdings ist das Konzept nicht zu Ende gedacht. Wie reichert sich das entgaste Magma wieder mit neuen Gasen an? Was passiert mit der entgasten Schmelze? Diese muss durch nachströmendes Material doch weiter im Förderschlot aufsteigen, bis sie ausgestoßen wird. Die Förderschlote, welche strombolianisch eruptieren sind für gewöhnlich nicht offen, sondern mit Lava-Fragmenten gefüllt, welche an der Oberfläche des Schlotes bereits erkaltet sind.