Tektonik

Die Tektonik ist ein Teilgebiet der Geologie und befasst sich mit Aufbau und Dynamik der Erdkruste. Von besonderem Interesse sind dabei die Bewegungsmuster der Erdkrustenplatten entlang der tektonischen Plattengrenzen. Sie werden unter dem Begriff Plattentektonik zusammengefasst. Die Platten bewegen sich heute noch mit einer Geschwindigkeit im Zentimeterbereich.

Die Plattengrenzen sind die Orte an denen die meisten Erdbeben stattfinden und wo sich eine Vielzahl Vulkane bildeten und Gebirge entstehen. Darüber hinaus gibt es auch in den Erdkrustenplatten zahlreiche Störungszonen, an denen tektonische Prozesse stattfinden. Diese können sich selbst in kleinen Gesteinsproben wiederspiegeln, anhand derer sich die Geschichte eines Gesteins ablesen lässt.

Entlang von Störungen sind unterschiedliche Bewegungen möglich. Gesteinsschichten können sich horizontal, oder vertikal verschieben. Dabei kann der Versatz mehrere Tausend Meter betragen. Gesteinspakete geraten dabei oft in größeren Tiefen, wo sich die Druck- und Temperaturbedingungen ändern. Diese Änderungen lösen oft chemische Reaktionen im Gestein aus und es verwandelt sich. Solche Gesteine nennt man metamorphe Gesteine.

Die Bewegungen der Gesteine entlang von Störungen lösen Druck-, oder Spannungen aus und es kann zu Sprödbruch, oder zur plastischen Verformung des Gesteins kommen. Während der Bruch eines Gesteins ein Erdbeben auslösen kann, verursacht die plastische Verformung Gesteinsfalten. Verbogene Gesteinsschichten entlang von Störungszone können aber auch plötzlich zurückschnellen und ebenfalls Erdbeben auslösen.

Der Begriff Tektonik wurde vom griechischen tektonikós abgeleitet, was soviel wie „die Baukunst betreffend“ heißt. In diesem Fall ist der Baukünstler die Erddynamik. Sie wird auch als Voraussetzung für die Existenz von Leben auf unserem Planeten angesehen. Motor hinter der Dynamik der Erde sind die Temperaturunterschiede im Erdinneren. Sie lassen Konvektionsströmungen entstehen, die sich wiederum direkt auf der Erdplatten auswirken und somit die Plattentektonik bedingen.

Tephra

Als Tephra werden vulkanische Lockerstoffe bezeichnet, die als fragmentierte Lava explosiv gefördert werden. Wenn sich die Tephra am Boden ablagert und verfestigt, entstehen pyroklastische Sedimente.

Tephra unterscheidet sich in ihrer Korngröße und wird entsprechend in Asche, Lapilli und Bomben, bzw. Blöcke eingeteilt. Die Vulkanasche besteht quasi aus Sandkörnern mit einer Korngröße kleiner als 2 mm. Die Lapilli sind in etwa so groß wie Kieselsteine und haben einen Durchmesser zwischen 2 mm und 64 mm. Alles was größer als 64 mm ist, bezeichnet der Vulkanologen als Blöcke oder Bomben. Während die Lava der Blöcke bei der Eruption bereits erstarrt war, wurden die Bomben in einem plastischen Zustand ausgeworfen. Dadurch nahmen sie eine spindealartige bis runde Form an. Bei der Abkühlung schrumpfen die Bomben, wodurch sich an der Oberfläche Risse bilden. Aufgrund der so entstandenen Oberflächenstruktur spricht man von Brotkrustenbomben. Lapilli, Blöcke und Bomben werden auch als Pyroklasten bezeichnet. Unregelmäßig geformte Pyroklasten werden auch als Schlacke bezeichnet. Dies geschieht in Anlehnung an der Schlacke aus Hochöfen. Besonders auf Eruptionsspalten bilden sich Schlackenkegel. Die Schlacke wird häufig von Lavafontänen erzeugt.

Die Fragmentation der Lava erfolgt durch explosive Eruptionen. Die Lava steht im Förderschlot und wird durch den hohen Gasdruck eruptiert. Die dabei entstehenden Explosionen zerfetzen die Lava in unterschiedlich große Partikel. Die Vulkanasche kann bis in die Stratosphäre aufsteigen und wird mit dem Wind über große Entfernungen verfrachtet. Je feiner die Partikel sind, desto weiter reisen sie mit dem Wind, bis sie schließlich zu Boden fallen. Größere Partikel lagern sich in Kraternähe ab. Bei besonders starken Explosionen werden groß Bomben und Blöcke mehrere Kilometer weit ausgeschleudert. Helme bieten gegen diese großen Pyroklasten kaum Schutz. Selbst walnussgroße Objekte können zu tödlichen Geschossen werden.

Die Menge der geförderten Tephra ist ein wichtiges Kriterium zur Klassifizierung der Eruptionsstärke nach dem Vulkanexplosivitätsindex (VEI). Wird keine Tephra gefördert, hat die Eruption einen VEI 0. Werden mehr als 1000 Kubikkilometer Tephra gefördert, wird die Eruption mit einem VEI 8 eingestuft.

Thermophile Mikroorganismen

Thermophilie Mikroorganismen kommen besonders häufig in vulkanischen Thermalquellen vor. Diese Mikroorganismen bevorzugen eine Umgebung mit warmen Temperaturen zwischen 45 und 80 Grad Celsius. Kommen Lebewesen in noch heißeren Environments vor, spricht man von Hyperthermophilen.


Typische Thermophile sind Archaen (Archebakterien, Urbakterien), weniger häufig kommen auch Bakterien ( Bacillus, Clostridium, oder Cyanobakterien) vor. Archaen können Temperaturen von mehr als 70 Grad vertragen und finden sich häufig in Thermalquellen und Geysirbecken. Sie können das Wasser färben und mattenartige Kolonien bilden.

Hyperthermophile Archaen vertragen sogar Wassertemperaturen von über 100 Grad Celsius und leben an Black Smokern in der Tiefsee. Aufgrund des hydrostatischen Drucks kocht das Wasser an den Hydrothermalen Tiefseequellen nicht, daher kann das Wasser über 100 Grad heiß werden. Viele dieser Organismen sind anaerob, d.h. sie brauchen keinen Sauerstoff. Ihr Stoffwechsel beruht auf Schwefel, oder der Reduzierung von Eisen-Isotopen. Bei niedrigen Temperaturen können sie zwar oft Überleben, sind aber nicht in der Lage sich zu vermehren.

Seltener kommen auch höhere Organismen in heißen Quellen vor. Besonders im Randbereich von Thermalquellen kommen Algenteppiche vor. Es wurden aber auch schon thermophile Pilze, Würmer und Krebse entdeckt.

Entwicklung des Lebens in Heißen Quellen

Einer wissenschaftlichen Theorie nach entwickelten sich erste irdische Lebensformen in heißen Quellen vulkanischen Ursprungs. Diese Theorie fußt auf einer Entdeckung, die auf das Jahr 2014 zurück geht und im australischen Nordwesten gemacht wurde. Im 3,48 Milliarden alten Sedimenten der Dresser-Formation fanden Forscher Geyserit-Gestein, das sich -wie der Name bereits vermuten lässt- in Geysirbecken bildete. In Hohlräumen des Geyserits wurde eine Substanz gefunden, die aus einem klebrigen Film gebildet wurde, den Bakterien absondern. Die Forschergruppe um Djocik und Van Kranendonk geht davon aus, dass sich im Geysirbecken erste Einzeller gebildet hatten.

Eine andere Theorie sieht die Geburtsstätte irdischen Lebens in der Nähe der hydrothermalen Tiefseequellen. Auf jeden Fall wird es sich bei den ersten Lebewesen der Erde um anaerobe Organismen gehandelt haben, da sich Sauerstoff erst durch die Ausscheidungen der Blaualgen-Bakterien bildete. Dieser wurde bis vor 2,3 Milliarden Jahren aber durch Reaktion mit im Wasser gelöstem Eisen und Schwefel sofort verbracht. Erst als dieser Prozess zum Erliegen kam, konnte sich eine sauerstoffhaltige Atmosphäre bilden.

Tornillo

Unter einem Tronillo versteht der Seismologe ein schraubenförmiges Erdbebensignal auf einem Seismogramm. Die Signale sind monofrequent und ihre Amplitude klingt mit zunehmender Laufzeit ab. Daher haben sie die Gestalt einer Schraube (auf Spanisch tornillo). Die Frequenz von Tornillos liegt typischerweise im Infraschallbereich.

Tornillos am Vulkan Galeras

Von Tornillos wurde erstmals im Zusammenhang mit dem Ausbruch des Vulkans Galeras (Kolumbien) im Jahr 1993 berichtet. Der Vulkan brach relativ überraschend aus, gerade als sich mehrere Vulkanologen im Krater befanden. 6 Forscher und 3 Touristen starben durch die unerwartete Eruption. Mehrere Personen wurden verletzt. Die Forscher waren im Rahmen einer Konferenz zusammen gekommen und stellten sich natürlich die Frage, ob es nicht doch Anzeichen einer bevorstehenden Eruption gab. Bei der Durchsicht der Seismogramme stieß man auf die Tornillos. Einige Jahre lang galten sie als eindeutiger Hinweis einer bevorstehenden Eruption. Heute weiß man allerdings, das Tornillos vor einen bevorstehenden Vulkanausbruch warnen können, allerdings muss es nicht zwangsläufig zu einer Eruption kommen, wenn zuvor Tornillos registriert wurden. So ist es wie mit vielen anderen Messdaten auch, die alleine für sich genommen kein zuverlässiges Instrument darstellen, um eine Eruption verlässlich vorherzusagen.

Tornillos und der Klang des Vulkans

Die Tornillos repräsentieren ein seismisches Signal im Infraschallbereich. Mittels Synthesizer lassen sich die unhörbaren Geräusche in für uns hörbare Töne umwandeln. So sprechen Vulkanologen gerne von „Orgeltönen“. Die Tornillos entstehen, wenn Gas durch den Förderschlot eines Vulkans gedrückt wird. Je nach Dimension des Förderschlotes und dem Gasdruck, entstehen unterschiedliche Infraschall-Töne. Ganz nach dem Prinzip einer Orgelpfeife.  Die Tornillos unterscheiden sich in Frequenz und Oszillation. So konnten Forscher am Cotopaxi die Tornillos dazu benutzten, den Förderschlot genauer zu untersuchen und auf die Höhe des Magmas im Schlot schließen. Nach der letzten eruptiven Phase im Jahr 2015 war der Schlot zwischen 270 und 320 Meter tief und 125 Meter breit. Bereits in einer früheren Arbeit gelang es Vulkanologen die Tremor-Töne eines Vulkans hörbar zu machen. (Quelle: Johnson et al./ American Geophysical Union)

Transformstörung

Eine Transformstörung (engl.: strike slip fault) trennt 2 tektonische Kontinentalplatten voneinander. Entlang der Störungszone verschieben sich die Platten seitwärts. Sie ist das größere Pendant zu einer Blattverschiebung (Transversalverschiebung), die eine lokale Störung in einer Platte darstellt. Das Bewegungsprinzip ist bei Transformstörung und Blattverschiebung identisch: Die Erdkruste verschiebt sich entlang einer senkrecht verlaufenden Fläche horizontal.

Man unterscheidet in sinistrale (linkshändige) und dextrale (rechtshändige) Bewegungsrichtung. Zur Ermittlung der Bewegungsrichtung wird der Bewegungssinn der Platte herangezogen, auf die der Betrachter nicht steht.

Erdbeben an Transformstörungen

Die Bewegungen entlang von Störungszonen laufen in den seltensten Fällen gleichmäßig ab. Obwohl die Kräfte auf die Platten konstant wirken, verhindert die Reibung entlang der Gesteinsflächen gleichförmige Bewegungen. Stattdessen verhaken die Platten und es bauen sich Spannungen auf, die solange größer werden, bis sich die verharkten Platten mit einem Ruck lösen. Diesen ruck nehmen wir als Erdbeben wahr.

Bekannte Transformstörungen

Zwei große Transformstörungen spielen gerade unter dem Aspekt der Erdbeben eine große Rolle im Weltgeschehen: Die San Andreas fault und die Nordanatolische Verwerfung. Beide sind für eine Reihe katastrophaler Erdbeben verantwortlich und an Beiden werden künftig weitere zerstörerische Starkbeben erwartet.

Die San Andreas fault liegt im US-Bundesstaat Kalifornien und trennt die Pazifische Platte vom Nordamerikanischen Kontinent. Bei ihr handelt es sich um eine dextrale Transformstörung die fast 1300 km lang ist. Das wohl bekannteste Erdbeben an dieser Störungszone ereignete sich im Jahr 1906: Ein Erdstoß der Magnitude 7,6 zerstörte San Francisco. Seitdem wartet man auf ein neues „big one“.

Die Nordanatolische Verwerfung liegt in der Türkei und trennt die Anatolische Platte von Eurasien. Auch sie ist rechtshändig und gut 1200 km lang. Sie verläuft in etwa parallel zur Küste des Schwarzen Meeres, passiert das Marmarameer und mündet in die Ägäis. Auf der Störungszone liegen Metropolen Izmit und Istanbul. eines der jüngsten Starkbeben ereignete sich 1999 und hatte eine Magnitude von 7,6. Es forderte 18.000 Menschenleben und legte die Stadt Gölcük in Trümmern. Es wird befürchtet, dass Istanbul ein ähnliches Schicksal droht.

Eine sehr schöne Blattverschiebung findet sich in China. Entlang der Piqiang fault wird ein ganzer Höhenzug sinistral versetzt. Die devonischen- und silurischen Sedimentgesteine sind um gut 2 km verschoben worden.

Diese wunderbare Störungszone liegt südlich der Tien Shan Berge, im Nordwesten der Provinz Xinjiang. Dort sind Gesteinsschichten aus mehreren Erdzeitaltern aufgeschlossen.

Tremor

Als Tremor bezeichnet man eine besondere Art vulkanisch bedingter Erdbeben. Sie sind von geringer Magnitude und äußern sich als ein beständiges Zittern des Erdbodens. Tremor wird direkt von den Bewegungen magmatischer Fluide im Untergrund ausgelöst. In der Vulkanologie dient Tremor als Indikator für Magmenaufstieg.

Tsunami

Ein Tsunami ist eine gefürchtete Riesenwelle, die ein großes zerstörerisches Potenzial aufweist. Tsunami ist ein Begriff aus dem Japanischen und bedeutet „Hafenwelle“. Sie baut sich erst im flachen Wasser zur vollen Höhe auf und kann sich kilometerweit ins Landesinnere schieben. Dort richtet sie große Zerstörungen an. Tsunamis entstehen zu 90% durch Erdbeben unter dem Meeresboden: wenn sich der Meeresboden explosionsartig vertikal verschiebt kann eine Welle angereget werden. Dazu sind Erdbeben mit Magnituden größer als 7 notwendig, sowie ein flaches Hypozentrum. Aber nicht bei jedem starken Erdbeben kommt es zu einem vertikalen Versatz des Meeresbodens. Zudem können Tsunamis durch submarine Hangrutschungen generiert werden, oder wenn große Massen ins Meer eingebracht werden. Dies kann bei Vulkanausbrüchen geschehen, meistens in Verbindung mit dem (partiellen) Kollaps vulkanischer Strukturen. Ein normaler Bergsturz, bei dem die Gesteinsmassen ins Wasser krachen, kann ebenfalls  einen Tsunami auslösen.

Das Besondere an einem Tsunami ist, dass er in tiefem Wasser keine hohen Wellenberge aufbaut und selten Wellen erzeugt, die höher als 1 m sind. Dafür ist die Wellenlänge sehr groß und kann viele Kilometer betragen. Bei Tsunami-Wellen handelt es sich um Scherwellen mit der Charakteristik von Flachwasserwellen. Selbst im tiefen Ozean bewegt sich die gesamte Wassersäule bis zum Grund des Ozeans.

Tsunamis breiten sich sehr schnell aus und können bis zu 800 km/h schnell werden. Damit sind sie in etwas so schnell wie ein Passagierflugzeug und können binnen weniger Stunden ganze Ozeane durchqueren.

Welche Warnzeichen eines herannahenden Tsunamis gibt es?

Wenn man sich weit vom Erdbebenzentrum entfernt befinden, wohl möglich sogar auf einem anderen Kontinent, spürt man das auslösende Erdbeben nicht. Wenn man dann auch keine Medien konsumiert, ist man wahrscheinlich ahnungslos, dass sich eine Katastrophe anbahnt. Befindet man sich and er Küste mit blick aufs Meer, kann es trotzdem eine Warnung geben: wenn sich das Meer plötzlich weit zurückzieht, sollte man anfangen so schnell wie möglich höher gelegenes Gelände aufzusuchen. Notfalls auf das Dach eines stabilen Gebäudes aus Beton fliehen. Dabei sollte man mindestens das 5-6 Stockwerke erreichen.

Berüchtigte Tsunamis

Zerstörungen an de japanische Küste. © U.S. Marine Corps photo by Lance Cpl. Garry Welch

Einer der bekanntesten und katastrophalsten Tsunamis dürfe jener vom 26. Dezember 2004 sein, der durch ein Erdbeben der Magnitude 9,3 bei Sumatra ausgelöst wurde. In der Folge entstanden mehrere Wellen, die quer durch den Indischen Ozean reisten. In 8 asiatischen Ländern und an der Küste Ostafrikas starben mindestens 231.000 Menschen. Es war eine der folgenschwersten Naturkatastrophen der Neuzeit und galt als Jahrhundert-Ereignis.

Nur wenige Jahre später –am 11. März 2011– gab es eine ähnliche Katastrophe in Japan. Das  Tōhoku-Erdbeben mit der Magnitude 9,0 verursachte Tsunamis an der Ostküste Japan. In der Folge starben nicht nur Menschen, sondern das Atomkraftwerk von Fukushima havarierte und es kam zur Kernschmelze. Nach behördlichen Angaben gab es 15.844 Tote und 3.450 Vermisste.

Tsunamis, die durch Vulkankatastrophen verursacht wurden, ereigneten sich gleich 2 Mal am indonesischen Inselvulkan Krakatau. Die erste Tragödie spielte sich 1883 ab. Mindestens 36.000 Menschen starben in den Wellen, als der Inselvulkan infolge starker Eruptionen kollabierte. Eine kleinere Katastrophe spielte sich am 22. Dezember 2018 ab, als Anak Krakatau dem Beispiel des ursprünglichen Vulkans folgte. In einem vergleichsweise kleinen Tsunami kamen 439 Menschen um.