PNG: Hydrothermalfeld speit Gold und Lebensbausteine aus

Neuentdecktes Hydrothermalfeld vor Papua-Neuguinea verwundert Forscher: Es förderte Gold und die Bausteine des Lebens

Vor der Küste Papua-Neuguineas haben internationale Forschende unter Leitung von GEOMAR ein Hydrothermalfeld entdeckt, das die Art und Weise, wie wir die Geologie der Tiefsee und sogar die Entstehung des Lebens auf der Erde verstehen, verändern könnte. Das sogenannte „Karambusel-Feld“ liegt an der Westflanke des Conical Seamount, eines vermutlich erloschenen Vulkans in der Tabar-Lihir-Tanga-Feni-Inselkette (TLTF). Diese Inselkette ist das Produkt einer Subduktionszone, in der die Pazifische Platte unter die Bismarck-Platte abtaucht. Hier, in 1200 Metern Tiefe, stoßen zwei Welten aufeinander: magmatisch erhitzte Hydrothermalflüssigkeiten und kühle Kohlenwasserstoff-Sickersysteme, die hauptsächlich Methan fördern.



Subduktion als Motor

Karambusel-Hydrothermalfeld

Die Entdeckung von Karambusel ist nicht nur eine geologische Kuriosität, sondern auch ein Lehrbuchbeispiel dafür, wie Subduktionsprozesse das Antlitz des Meeresbodens prägen. Wenn die ozeanische Platte unter die benachbarte Platte gezogen wird, schmilzt ein Teil des abtauchenden Materials im Erdmantel auf. Das erzeugte Magma steigt auf und bildet Vulkane, wie sie auf der TLTF-Kette zu finden sind.

Der Conical Seamount ist ein solcher Vulkan. Radiometrische Altersdatierungen zeigen, dass er vor rund 88.500 Jahren aktiv war. Seitdem ist sein Magmasystem abgekühlt, aber nicht völlig erloschen. Genügend Restwärme bleibt, um Meerwasser, dass durch Risse und Spalten in den Meeresboden eindringt zu erwärmen und zirkulieren zu lassen. In mehreren Kilometern Tiefe wird dieses Wasser erhitzt, mit Mineralen angereichert und tritt schließlich an der Flanke des Seamounts wieder aus.

Das macht Karambusel zu einem sogenannten postvulkanischen Hydrothermalsystem. Es ist der „Nachglüher“ eines erloschenen Vulkans. Besonders spannend: Die tektonischen Störungen, die durch dieselben Subduktionsprozesse entstehen, fungieren auch als Aufstiegsrouten für Kohlenwasserstoffe aus den umliegenden Sedimenten. So entsteht ein einzigartiges hybrides System, das bislang weltweit ohne Beispiel ist.

Schatzkammer der Tiefsee

Die geochemischen Analysen zeigen, dass Karambusel eine Schatzkammer an Edelmetallen beherbergt. Gesteinsproben enthalten Gold- und Silberminerale, die auf frühere Hochtemperaturphasen hinweisen. Heute treten dort vor allem warme Fluide von bis zu 51 °C aus, die reich an Lithium, Silizium, Arsen, Antimon und anderen Elementen sind. Solche hydrothermalen Systeme gelten als natürliche „Raffinerien“ für die Entstehung von Erzvorkommen.

Für die Rohstoffindustrie ist das von großem Interesse. Die benachbarte Lihir-Insel beherbergt eines der größten Goldbergwerke der Welt – ebenfalls ein Produkt eines hydrothermalen Systems in einem subduktionsbezogenen Vulkanbogen. Karambusel bietet daher ein modernes Analogon für die Bildung solcher Lagerstätten.

Bei all dem Rohstoffreichtum stellt sich die Frage, ob dieser von Menschen abgebaut werden sollte. Tiefseebergbau ist umstritten, denn er stellt einen massiven Eingriff in die sensiblen Ökosysteme dar und verursacht oft irreversible Schäden. Die Fauna am Karambusel-Feld – darunter Muscheln, Röhrenwürmer und Bakterienmatten – ist hochspezialisiert und endemisch. Forschende warnen, dass jede kommerzielle Aktivität hier nicht nur geologische, sondern auch biologische Archive zerstören könnte.

Ein Hinweis auf die Ursprünge des Lebens

Lebendige Vielfalt. © GEOMAR

Viele Hypothesen zur Entstehung des Lebens sehen Hydrothermalquellen als Geburtsort der ersten Stoffwechselkreisläufe. Die Mischung aus Wärme, mineralischen Ausscheidungen und chemischen Prozessen bietet ideale Bedingungen für die Synthese komplexer organischer Moleküle als Voraussetzung für die Entstehung von Leben.

Karambusel liefert dafür ein besonders spannendes Umfeld: Die dort austretenden Kohlenwasserstoffe bestehen zu über 85 Prozent aus Methan, ergänzt durch Ethan, Propan und andere leichte Kohlenwasserstoffe. Diese stammen nicht aus rein abiotischer Synthese, sondern sind thermogen und sind aus erhitztem organischen Material entstanden. Damit zeigt Karambusel, dass frühe Hydrothermalsysteme nicht nur anorganische Chemie, sondern auch reichlich organische Moleküle bereitgestellt haben könnten.

Hinzu kommt, dass die Temperaturen am Austritt vergleichsweise moderat sind. Während die berühmten „Schwarzen Raucher“ Temperaturen von über 350 °C erreichen, bietet Karambusel ein milderes, geradezu „lebensfreundliches“ Milieu. Das könnte für empfindliche Moleküle wie RNA oder frühe Zellstrukturen von Vorteil gewesen sein.

Die Entdeckung des Karambusel-Feldes zeigt, wie wenig wir über die Tiefsee wissen. Sie ist ein Ort, an dem geologische Prozesse, Ökosysteme und sogar die Bausteine des Lebens auf einzigartige Weise zusammenwirken. Gleichzeitig erinnert sie uns daran, wie verletzlich solche Systeme sind.

Die Wissenschaft hat hier ein Labor unter natürlichen Bedingungen gefunden, das uns nicht nur etwas über Erzbildung und Vulkanismus lehrt, sondern auch über unsere eigene Entstehungsgeschichte. Die Frage, ob solche Felder eines Tages wirtschaftlich genutzt werden dürfen, wird sich die Gesellschaft stellen müssen. (Quellen: sciencedirect.com, Pressemeldung GEOMAR)

Santorin: Erdbebenserie durch große Magmenintrusion verursacht

Blick von der Vulkaninsel Nea Kameni zum Calderarand von Santorin. © Marc Szeglat

Erdbebenserie bei Santorin: Neue Studie enthüllt massiven Magma-Aufstieg unter dem Meeresboden

Die Vulkan-Community hat lange auf neue Studien zu der starken Erdbebenserie gewartet, die sich zwischen Januar und März 2025 nordöstlich von Santorin zutrug und nicht nur zahlreiche Inselbewohner in die Flucht trieb, sondern auch eine wissenschaftliche Kontroverse auslöste. Strittig war insbesondere die Ursache der Beben: Während eine Gruppe rein tektonische Prozesse hinter den Erdbeben vermutete, sah die andere Fraktion ihren Ursprung in einer Magmenintrusion. Eine neue Studie internationaler Forschender unter Leitung des GFZ liefert nun Belege für letztere Hypothese.

Kernaussagen der Studie:

  • Im Juni 2024 begann sich Magma unter Santorin anzusammeln und die Insel hob sich leicht.
  • Im Januar 2025 startete die Intrusion eines 13 Kilometer langen magmatischen Gangs, der aus einem mitteltiefen Reservoir unter Kolumbos gespeist wurde.
  • Die Intrusion stoppte in 2–4 Kilometern Tiefe, ihr Volumen betrug 0,31 Kubikkilometer.
  • Intrusion aktivierte regionale Störungszonen und verursachte die Erdbebenkrise.
  • Höhepunkt der Seismizität zwischen Januar und März mit mehr als 28.000 Erdbeben, die teils mittels KI-Auswertung analysiert wurden.
  • Das Ereignis betraf die magmatischen Systeme von Santorin und Kolumbos, die miteinander gekoppelt sind, so dass Magma zwischen ihnen ausgetauscht werden kann.

 

Blick auf Nea Kameni

Die Inseln des Santorin-Archipels markieren den Rand einer Caldera, die ihre heutige Form vor rund 3.600 Jahren durch die gewaltige Minoische Eruption erhielt. Zwei kleinere Inseln innerhalb der Caldera sind die Gipfel jüngerer Vulkankegel. In unmittelbarer Nähe von Santorin befindet sich der aktive Unterwasservulkan Kolumbos. Die Vulkane der Ägäis gehören zum Hellenischen Vulkanbogen, der seine Existenz der Kollision von Afrika mit Europa verdankt. Die Region ist von mehreren Bruchzonen durchzogen, die im Zusammenhang mit der Plattenkollision stehen. Historisch kam es auf Santorini mehrfach zu Vulkanausbrüchen, zuletzt 1950. 1956 ereigneten sich in der südlichen Ägäis zwei schwere Erdbeben, die einen Tsunami auslösten.

Das seismische Netzwerk der Region registrierte während der Erdbebenkrise Anfang 2025 Zehntausende Erschütterungen. Die stärksten hatten Magnituden über 5,0. Viele der Beben waren in und um Santorin deutlich zu spüren gewesen und verursachten Steinschläge und Risse in Hauswänden. Wissenschaftlerinnen und Wissenschaftler des GFZ Helmholtz-Zentrums für Geowissenschaften und des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel haben gemeinsam mit Forschenden aus Griechenland und anderen Ländern eine umfassende geologische Analyse dieser seismischen Krise durchgeführt. Die Ergebnisse erschienen heute in der Fachzeitschrift „Nature“.




Für die Untersuchung wurden seismische Daten aus einem dichten Netzwerk von Erdbebenstationen mit Deformationsmessungen von Ozeanbodeninstrumenten und satellitengestützten Systemen kombiniert, die am Unterwasservulkan Kolumbo installiert waren, der sich nur sieben Kilometer von Santorin entfernt befindet. Zusätzlich kam eine neu entwickelte KI-basierte Methode zur Lokalisierung von Beben zum Einsatz, die große Datenmengen automatisch auswertet und die Positionen der Herdzonen mit hoher Genauigkeit bestimmt. Mithilfe der KI konnten aus den Seismogrammen über 28.000 Erschütterungen identifiziert werden.

Die neuen Analysen der Studie zeigen, dass es zur Bildung eines magmatischen Gangs mit einem Volumen von rund 300 Millionen Kubikmetern kam, der aus einem mitteltiefen Reservoir unter Kolumbo aufgestiegen ist und etwa vier Kilometer unter dem Meeresboden stoppte. Auf seinem Weg durch die Kruste aktivierte das Magma regionale Störungszonen und erzeugte Tausende von Erdbeben sowie Tremorphasen, die die Region in Atem hielten.

Um die Dimension der Intrusion zu veranschaulichen: Bei den aktuellen Ausbrüchen auf Island werden im Durchschnitt 30 Millionen Kubikmeter Lava gefördert, wobei das größte Lavafeld ein Volumen von über 60 Millionen Kubikmetern erreichte. Bei der Cumbre-Vieja-Eruption auf La Palma im Jahr 2021 traten 200 bis 300 Millionen Kubikmeter Lava aus – in etwa die Menge, die sich nun unter dem Meeresboden nordöstlich von Santorin und Kolumbo befindet und auf ihre Eruption wartet.

Tatsächlich begann die seismische Krise bereits im Juli 2024, als Magma in ein flaches Reservoir unter Santorin aufstieg. Zunächst führte dies nur zu minimalen Hebungen der Insel um wenige Zentimeter. Ab Januar 2025 verstärkte sich die Erdbebenaktivität. Ende Januar begann der Aufstieg von Magma aus größerer Tiefe. Die Herdbewegungen der Beben verlagerten sich über eine Strecke von mehr als zehn Kilometern nordöstlich der Insel und erfolgten in mehreren Pulsen, wobei sie von 18 Kilometern Tiefe bis auf drei Kilometer unter dem Meeresboden aufsteigen. Durch die Kombination von seismischen Daten, GPS-Bodenstationen, Satelliten-Radarinterferometrie und Meeresbodeninstrumenten konnte die Bewegung des Magmas mit bisher unerreichter Detailgenauigkeit modelliert werden.

Die Analyse zeigt zudem eine zuvor unbekannte hydraulische Verbindung zwischen Santorin und Kolumbos. Die Absenkung der Insel während des Magmaaufstiegs deutet darauf hin, dass die beiden Vulkane im Untergrund miteinander interagieren. Diese Erkenntnisse sind für die Überwachung der Vulkane und die Gefahrenabschätzung in der Region von großer Bedeutung. Die Überwachung der Region wird im Rahmen des MULTI-MAREX Programms, an dem auch das GFZ beteiligt ist, fortgeführt.

Die Ergebnisse der aktuellen Studie liefern erstmals ein vollständiges Bild der Dynamik unter Santorin und Kolumbos. Sie zeigen, wie der Aufstieg von Magma tief im Untergrund zu massiver seismischer Aktivität führen kann und verdeutlichen die Bedeutung kontinuierlicher Überwachung in dieser geologisch hochexponierten Region.

(Quellen: nature.com: Isken, M.P., Karstens, J., Nomikou, P. et al. Volcanic crisis reveals coupled magma system at Santorini and Kolumbo. Nature 645, 939–945 (2025). Lizenz der CC. Pressemeldung GFZ)

Laacher-See-Vulkan: Forscher spürten Magmakammer auf

Laacher See Vulkan in der Osteifel. © Marc Szeglat

Neues 3D-Bild des Eifel-Magmasystems: Forscher kartieren das Reservoir unter dem Laacher-See-Vulkan und wiesen Schmelze nach

Obwohl in der Eifel seit mehr als 11.000 Jahren kein Vulkan mehr ausgebrochen ist, gilt die Region in Rheinland-Pfalz als schlafendes, aber nicht erloschenes Vulkangebiet. Die letzte Eruption des Laacher-See-Vulkans manifestierte sich sogar vor mehr als 13.000 Jahren. Dennoch legen Mofetten am Ufer des Sees nahe, dass es einen aktiven Magmenkörper unter dem Maar gibt, das eigentlich eine Caldera ist. Eine neue Studie deutscher Geowissenschaftler wirft nun einen bislang einzigartigen Blick in die Tiefe: Mit Hilfe der seismischen Tomografie konnte das Magmareservoir unter dem Laacher See hochauflösend visualisiert werden – und es wurde bestätigt, dass sich unter der Ost-Eifel weiterhin Magma ansammelt.

Das Forscherteam um Hao Zhang vom Deutschen Geo-Forschungs-Zentrum (GFZ) in Potsdam nutzte dafür ein beispielloses Messnetz: Zwischen September 2022 und August 2023 wurden mehr als 490 seismische Stationen in der Eifel betrieben. Dieses sogenannte Large-N-Experiment erfasste die Wellen von lokalen Erdbeben, die anschließend mithilfe der Tomographie in ein dreidimensionales Modell der oberen Erdkruste umgerechnet wurden.

Die Ergebnisse sind spektakulär: Unter dem Laacher See, Schauplatz einer gewaltigen Plinianischen Eruption vor nur 13.000 Jahren, fanden die Forscher eine zylindrische Anomalie in 2 bis 10 Kilometern Tiefe. Diese Zone weist eine ungewöhnliche Kombination aus niedriger P-Wellen-Geschwindigkeit und hohem VP/VS-Verhältnis auf, was ein typisches Signal für teilweise aufgeschmolzene Zonen in einem Magmenkörper darstellt. Das Volumen dieser Struktur wird auf rund 75 Kubikkilometer geschätzt. Die Anomalie ist um 40 Grad nach Südosten geneigt und schneidet in etwa zehn Kilometern Tiefe die Siegener Hauptüberschiebung, eine der wichtigsten geologischen Störungen der Region.

Laacher-See-Anomalie magmatischen Ursprungs. &ccpy; AGU/ GFZ/Hao Zhang

Besonders interessant ist, dass eine Konzentration von Mikrobeben an den Rändern dieser Zone festgestellt wurde, was auf hohen Fluiddruck oder erhöhte Temperaturen hindeutet. „Wir sehen damit erstmals, wo die aktiven Zonen liegen und wo Spannungen abgebaut werden“, erklärt Studienleiter Zhang.

Die Forscher konnten außerdem einen Zusammenhang zu tieferliegenden Prozessen herstellen. Unterhalb des Reservoirs verläuft ein seismisch aktiver „Kanal“ in der unteren Kruste, in dem seit 2013 immer wieder tieffrequente vulkanische Erdbeben registriert werden – ein Hinweis darauf, dass Magma und Fluide aus dem oberen Mantel aufsteigen.

Auch wenn ein Vulkanausbruch nicht unmittelbar bevorsteht, betonen die Autoren die Bedeutung ihrer Ergebnisse für die Gefahreneinschätzung. „Das Magmareservoir unter dem Laacher See ist noch da, und es wird offenbar immer wieder mit Material aus der Tiefe versorgt“, sagt Co-Autor Torsten Dahm. Damit wird klar: Das Eruptionsrisiko in der Osteifel ist höher als bislang vielfach vermutet.




Neben dem Laacher See wurden auch kleinere Anomalien unter anderen Vulkanen wie Rieden und Korretsberg identifiziert. Letzterer liegt wenige Kilometer südöstlich des Laacher-See-Vulkans und war in den letzten Monaten öfter Austragungsort von Mikrobeben. Damit liefert die Studie nicht nur neue Einblicke in die vulkanische Vergangenheit der Eifel, sondern auch in ihre mögliche Zukunft. (Quelle: Preprint-Studie-AGU)

Seismologie: Erdbeben erzeugen extreme Hitze

Heiße Erkenntnisse: Wie Erdbeben Energie in Schmelze umwandeln können

Ein Team von Geophysikern des Massachusetts Institute of Technology (MIT) hat erstmals den vollständigen Energiehaushalt von Erdbeben in Laborversuchen nachvollziehen können. Mit Hilfe von künstlich erzeugten Mikroerdbeben im Labor ist es gelungen, zu zeigen, was mit dem Großteil der bei einem Erdbeben freigesetzten Energie geschieht, denn nur ein vergleichsweise geringer Prozentsatz der Erdbebenenergie wird in die gefürchteten Erdbebenwellen umgewandelt, die katastrophale Folgen haben können. Die Experimente zeigen, dass ein Erdbeben weit mehr verursacht als nur ein spürbares Rütteln des Bodens: Der überwiegende Teil der freigesetzten Energie wird in Wärme umgesetzt.




Gesteinsproben unter dem Rasterelektronenmikroskop

Für ihre Studie simulierte das Team Erdbeben im Mikromaßstab, indem es synthetische Granitproben unter kontrollierten Druckbedingungen bis zum plötzlichen Versagen belastete. Die Messungen ergaben, dass rund 80 Prozent der Energie in Wärme übergehen, etwa zehn Prozent seismische Erschütterungen erzeugen und weniger als ein Prozent für die Zerkleinerung von Gestein aufgewendet wird. Diese Angaben sind gerundet, denn die Forscher gaben in ihrer Studie vergleichsweise große Schwankungsräume an.

Die Umwandlung der Energie in Wärme erzeugt dabei enorme Temperaturspitzen: Innerhalb von Mikrosekunden kann sich das Gestein auf bis zu 1.200 Grad Celsius erhitzen, bevor es ebenso schnell wieder abkühlt.

Diese extremen Bedingungen führen dazu, dass an den Gleitflächen der Gesteinsbruchzonen bzw. Störungen dünne Schmelzfilme entstehen – ein Phänomen, das auch in der Natur beobachtet wird. Geologen bezeichnen solche glasartigen Strukturen als Pseudotachylite. Sie bilden sich häufig entlang von Scherzonen, insbesondere in Subduktionszonen, wo sich Spannungen über lange Zeiträume aufbauen und schließlich ruckartig entladen. Solche Schmelzfilme können das weitere Verhalten einer Verwerfung beeinflussen, indem sie kurzfristig wie Schmiermittel wirken und das Abrutschen erleichtern. Das verursacht eine Art Rückkopplungseffekt, denn dadurch wird ein größerer Teil der Erdbebenenergie in seismische Wellen verwandelt, was größere Schadenswirkungen mit sich bringt.

Die neuen Erkenntnisse haben weitreichende Bedeutung für die Einschätzung seismischer Gefahren. Bislang ließ sich nur der Anteil der Erdbebenenergie messen, der in Form von Bodenerschütterungen an der Oberfläche ankommt. Wärmeproduktion und unterirdische Gesteinsbrüche blieben größtenteils verborgen. Das MIT-Team zeigt nun, dass der Wärmeeintrag nicht vernachlässigt werden darf und möglicherweise auch auf die langfristige Stabilität von Verwerfungen wirkt.

Darüber hinaus werfen die Ergebnisse spannende Fragen für die Magmenentstehung auf. Zwar ist die Energiemenge eines einzelnen Bebens zu gering, um große Schmelzvolumina zu erzeugen, doch wiederholte Erdbeben könnten möglicherweise lokal genug Wärme eintragen, um bereits teilweise aufgeschmolzenes Gestein weiter zu verflüssigen. Auf diese Weise könnte der Prozess indirekt die Migration von Magma begünstigen – insbesondere in geodynamisch aktiven Regionen, wie wir es aktuelle in Kamtschatka sehen.

Die Forschenden hoffen, dass ihre Laborversuche helfen, Erdbebenmodelle zu verbessern und das Risiko künftiger Ereignisse präziser abzuschätzen. Denn je besser bekannt ist, wohin die Energie eines Bebens fließt, desto genauer lässt sich auch seine zerstörerische Wirkung einschätzen. (Quellen: AGU, Pressemeldung MIT)

Campi Flegrei: Studie zur Erhitzung des Grundwasserleiters

Neue Studie zur Erhitzung des Grundwasserleiters der Campi Flegrei – Magmatisch bedingt

Heute wurde vom INGV mitgeteilt, dass eine neue Studie veröffentlicht wurde, die im Rahmen einer Kooperation des INGV mit dem Institut für Geowissenschaften und Georessourcen des Nationalen Forschungsrats in Pisa und der Firma Steam srl, die auf geothermische Anlagen spezialisiert ist, entstanden ist. Die Studie wurde in der Fachzeitschrift Solid Earth veröffentlicht und beschäftigt sich mit den magmatischen Gasen der Fumarolen im Bereich der Solfatara und Pisciarelli.

Pisciarell-Fumarole und Schlammtopf

Mit Hilfe von Gasanalysen und anderen geowissenschaftlichen Daten gelang es, ein Modell des magmatisch-hydrothermalen Systems der Solfatara zu entwickeln und einen Erklärungsansatz, warum sich das Wasser eines Grundwasserleiters in 2,7 bis 4,0 Kilometern Tiefe erhitzt, was letztendlich zum Druckaufbau des Systems führt.

Die Forscher analysierten Daten von 4 Jahrzehnten, die mithilfe speziell entwickelter Geothermometer und Geobarometer erfasst wurden. Mit den Instrumenten wurden Temperatur und Druck von drei Grundwasserleitern in unterschiedlichen Tiefen der Phlegräischen Felder gemessen. Die dabei gewonnenen Daten wurden mit geowissenschaftlichen Informationen aus Oberflächenuntersuchungen und geothermischen Explorationsbohrungen aus den 1970er- und 1980er-Jahren verglichen, die bis in Tiefen von rund drei Kilometern reichten.

Die Ergebnisse bestätigen, dass die Erwärmung und Druckzunahme im Grundwasserleiter die direkte Ursache der aktuellen Bodenhebung sind. Diese Prozesse werden durch die magmatische Entgasung gesteuert, was bereits durch Schwankungen der Schwefelisotope in den fumarolischen Fluiden der Solfatara nachgewiesen wurde. Einen Nachweis von Magma in Tiefen oberhalb von 4 Kilometern erbrachte auch diese Studie nicht. Dennoch ist klar, dass es in größerer Tiefe eine Magmenakkumulation gibt.

Bei steigendem Druck im Grundwasserleiter besteht das Risiko hydrothermaler oder phreatischer Explosionen, wie wir sie im Juli 2024 im Biscuit-Basin des Yellowstone-Nationalparks sahen. Diese könnten durch die Verdampfung von Wasser und die plötzliche Ausdehnung des Dampfes ausgelöst werden und zum Aufbrechen des überlagernden Gesteins führen. Solche phreatischen Eruptionen entstehen, ohne dass es zu einem direkten Kontakt von Magma mit Grundwasser kommt. Es reicht eine starke Hitzequelle in der Tiefe, die das Gestein überhitzt und Wasser explosionsartig ausdehnen lässt, wenn es mit diesen heißen Gesteinen in Verbindung kommt.

Laut der Gefahreneinschätzung der Studienautoren könnte eine hydrothermale Explosion die Bildung heißer Schlammströme und Geröllmassen verursachen, die sich rasch ausbreiten und entlang der Geländevertiefungen bis zur Küste vordringen – ein Szenario, das in der Vergangenheit bereits dokumentiert wurde. Voraussetzung ist das Überschreiten der mechanischen Widerstandsfähigkeit der Deckgesteine, deren Festigkeit durch die zunehmende seismische Aktivität in der Region weiter abnimmt.

Die Autoren betonen, dass es sehr schwierig ist phreatische Eruptionen oder hydrothermale Explosionen vorherzusagen. Die Gefahr wächst, je länger die aktuelle Krise anhält. (Quelle: cnr.it)

Erdkern drehte scheinbar seine Rotationsrichtung um

Der innere Erdkern verändert seine Rotationsrichtung – ein Rätsel in 5000 Kilometern Tiefe

In den letzten Tagen berichteten verschiedene Internetmedien vermehrt, dass der innere Erdkern seine Rotationsgeschwindigkeit und Richtung geändert habe. Mehrere Leserinnen und Leser fragten mich daraufhin nach möglichen Auswirkungen auf die Erde. Vorweggenommen: Falls es Effekte gibt, dürften sie sehr gering sein.

Grundlage der Berichte ist eine Forschungsarbeit eines internationalen Teams unter Leitung der Chinesischen Akademie der Wissenschaften in Peking, an der auch die University of Southern California beteiligt war. Laut der Studie, die 2024 bei nature.com erschien, hat der feste innere Kern aus Eisen und Nickel nicht nur seine Rotationsgeschwindigkeit verändert, sondern scheint sich aus Sicht der Erdoberfläche seit etwa 2008 in die entgegengesetzte Richtung zu drehen.

Direkt beobachten lässt sich der fast mondgroße Kern nicht, da er mehr als 5000 Kilometer unter Mantel und äußerem Kern liegt. Hinweise liefert die Seismologie: Erdbebenwellen durchdringen das Erdinnere und geben Aufschluss über dessen Struktur und Dynamik. Besonders aussagekräftig sind PKIKP-Wellen, die an der Grenze zwischen äußerem und innerem Kern reflektiert werden. Werden wiederkehrende Erdbeben, sogenannte „Repeater“, miteinander verglichen, lassen sich selbst kleinste Veränderungen erkennen.

Für ihre Analyse untersuchten die Forschenden 121 solcher Ereignisse zwischen 1991 und 2023 in der Region der South Sandwich Islands. Messstationen in Alaska und Kanada zeigten ein klares Muster: Zwischen 2003 und 2008 rotierte der Kern schneller als die Erdkruste („Superrotation“). Danach verlangsamte er sich deutlich und drehte sich aus unserer Sicht rückwärts („Subrotation“). Wichtig ist: Der Kern hat seine Rotationsrichtung nicht tatsächlich geändert; die scheinbare Umkehr entsteht, weil sich der innere Erdkern nun langsamer als die Erdkruste dreht. Die Forscher vermuten, dass solche Richtungswechsel Teil eines 60- bis 70-jährigen Zyklus sind. Eine neue Erkenntnis ist, dass die Subrotation langsamer verläuft als die Superrotation, was bisherige Modelle gleichmäßiger Pendelbewegungen infrage. Vielmehr deutet alles auf ein komplexes Zusammenspiel von Mantel, äußerem und innerem Kern hin, bei dem auch das Magnetfeld eine Rolle spielt.

Als mögliche Auswirkungen der Erdkernverlangsamung werden Einflüsse auf das Magnetfeld und minimale Änderungen der Tageslänge diskutiert. Außerdem könnte es langfristig betrachtet Auswirkungen auf Vulkanismus und Erdbeben geben.

Ich persönlich halte die möglichen Effekte für sehr gering. Die Geschwindigkeitsunterschiede der Erdkernrotation sind minimal und liegen in der Größenordnung von Bruchteilen eines Millimeters pro Sekunde. Zum Vergleich: Ein Punkt auf der Erdoberfläche am Äquator bewegt sich infolge der Erdrotation mit 463 000 mm/s, was 463 m/s bzw. 1667 km/h (Überschallgeschwindigkeit) entspricht. Der Geschwindigkeitsunterschied zwischen Kern und Erdkruste liegt zwischen 0,02 und 0,07 mm/s (je nach Phase der Rotation). Damit rotiert der Erdkern ein Hundertmillionstel langsamer als die Erdoberfläche. Die minimalen Laufzeitunterschiede sind vor allem vom akademischen Interesse und dürften keine umwälzenden Veränderungen auf unsere Lebenswelt ausüben.

(Quelle der Studie: https://www.nature.com/articles/s41586-024-07536-4)

Campi Flegrei: Studie identifiziert 54000 Erdbeben mithilfe von KI

Neue Studie identifiziert 54.000 Erdbeben in den Campi Flegrei mithilfe von KI – Beben meistens tektonischen Ursprungs

Die seit 20 Jahren anhaltende und sich seit 2017 permanent steigernde Erdbebentätigkeit im Bereich der süditalienischen Caldera Campi Flegrei inspiriert zahlreiche Forscher zu Studien. So wurde jetzt im Magazin „Science“ die Studie eines internationalen Forscherteams veröffentlicht, das mit Hilfe von Künstlicher Intelligenz in den seismischen Aufzeichnungen der letzten 3 Jahre 54.000 Erdbeben identifizieren konnte. Weit mehr als bisher bekannt waren. Die meisten Erdbeben sollen tektonischer Natur gewesen sein und nicht direkt mit dem Aufstieg von Magma zusammenhängen. Unterhalb von 4 Kilometern Tiefe wurde keine Erdbeben festgestellt.

Eine Ausnahme bilden laut der Studie, die von Forschern der Stanford University sowie der Universität Neapel Federico II und dem INGV durchgeführt wurde, hybride Erdbeben, die sich im Bereich des Mont Obliano manifestierten. Diese Erschütterungen würden direkt mit Fluidbewegungen zusammenhängen.

Ringförmig angeordnete Erdbeben

Mit Hilfe von KI-gestützten Verfahren wurde anhand der Erdbebenmuster ein ringförmiges Störungssystem um die Bodenhebungszone im Dach der Caldera identifiziert. An diesem Störungssystem ereignen sich laut der Forschergruppe die meisten tektonisch bedingten Erschütterungen. Solche ringförmigen Störungssysteme kennen wir auch von den Dachbereichen bzw. Füllungen anderer Calderen, u.a. vom Bardarbunga in Island.

Die Beben werden nach Meinung der Forscher also nicht direkt von aufsteigendem Magma verursacht. Hinweise auf eine Magmenmigration in Tiefen von weniger als 4 km wurden nicht gefunden.
Obwohl einige Forscher, Bürokraten und auch besorgte Bürger der Region diese Nachricht so interpretieren, als würde nun die Gefahr eines Vulkanausbruchs gebannt sein, gebe ich zu bedenken, dass die allermeisten Erdbeben in Vulkanregionen eben dadurch zustande kommen, dass sich magmatische Fluide entlang von Störungen und Schwächezonen bewegen und Druckerhöhungen diese zu Beben anregen. Was folgt, ist ein Erdbebensignal, das alle Merkmale eines tektonischen Erdbebens aufweist, letztendlich aber dennoch durch Druckanstieg im magmatischen Speicher- und Fördersystem des Vulkans ausgelöst wurde. Zudem hat bis jetzt auch keine andere Studie Magma in weniger als 4 km Tiefe nachweisen können. Tatsächlich würde Magma in so geringer Tiefe kurz vor der Eruption stehen.

Rein vulkanotektonische Erdbeben, bei denen aufsteigendes Magma Gestein bricht, manifestieren sich in geringen Tiefen nur dann, wenn das Magma final aufsteigt. Bei offenen Aufstiegswegen kommt es oft erst Stunden oder Minuten vor einer Eruption zu einer seismischen Krise vulkanotektonischen Ursprungs. Die neuen Erkenntnisse der Studie liefern keinen Grund zur Entwarnung, sondern sie sagen lediglich aus, dass ein Vulkanausbruch nicht unmittelbar bevorsteht. Mehr als 54.000 Erschütterungen innerhalb von 3 Jahren (2 Beben pro Stunde) sowie die Bodenhebung sind alarmierende Anzeichen dafür, dass es im Untergrund einen starken Druckaufbau gibt. (Quelle der Studie: https://www.science.org/doi/10.1126/science.adw9038)

Fuji: KI-Simulation eines Ausbruchs mit Auswirkungen auf Tokio

Simulation eines Fuji-Ausbruchs. © KI

Tokio simuliert mit KI die Folgen eines Fuji-Ausbruchs und erstellt Video

Die Stadtverwaltung von Tokio hat erstmals ein Video herausgegeben, das mit Hilfe künstlicher Intelligenz einen Ausbruch des Vulkans Fuji-san simuliert. Das Video konzentriert sich in seiner Darstellung auf die Auswirkungen einer starken Ascheeruption auf Tokio, beinhaltet neben den KI-generieten Simulationen auch Realbildaufnahmen anderer Vulkanausbrüche. Die am 22. August präsentierte Simulation verdeutlicht, wie schnell die städtische Infrastruktur bei Ascheniederschlag an ihre Grenzen stoßen könnte.




Der Fuji ist aufgrund seiner fast perfekten Kegelform nicht nur Wahrzeichen Japans, sondern auch ein ziemlich großer Vulkan mit einem hohen Gefahrenpotenzial. Der 3 776 m hohe Stratovulkan liegt ca. 100 Kilometer westlich vom Stadtzentrum Tokios und kann an klaren Tagen von dort aus gesehen werden. Der letzte Ausbruch ereignete sich 1707 und hatte einen VEI 5. Die plinianische Eruption förderte Asche, die in Tokio Hausdächer einstürzen ließ. Außerdem wurden im großen Maßstab landwirtschaftliche Nutzflächen mit Asche bedeckt und Ernten zerstört.

In der KI-Simulation – die sich am Ausbruch von 1707 orientiert – geht man davon aus, dass der Ausbruch des Fuji über 1 Milliarden Kubikmeter Tephra fördern würde, wovon sich gut ein Viertel in Form von Vulkanasche im Großraum Tokio ablagern könnte. Es käme in erster Linie zu massiven Einschränkungen im öffentlichen Verkehr: Ablagerungen auf Gleisen und Fahrzeugen würden zu Zugausfällen führen, Straßen wären durch schlechte Sicht, Rutschgefahr und unzureichende Reinigung kaum passierbar. Ein besonderes Problem, das die Stadt hervorhebt, sind die Heimkehrschwierigkeiten hunderttausender Pendler, vorausgesetzt, der Vulkan würde während der Arbeitszeit ausbrechen. Zudem käme der Flugverkehr zum Erliegen.

Auch die Energieversorgung ist gefährdet. Asche beeinträchtigt Isolatoren und verstopft Filter in Kraftwerken. Untersuchungen des Wirtschaftsministeriums gehen von einem möglichen Rückgang der Stromkapazität um 20 bis 30 Prozent aus, selbst wenn Ersatzmaßnahmen ergriffen werden. Hinzu kommt die Gefahr langfristiger Kommunikationsstörungen durch überlastete Netze, beschädigte Basisstationen und Stromausfälle. Nicht explizit erwähnt, aber nicht zu vernachlässigen, wäre der Ausfall von Rechenzentren, zum einen weil auch hier Luftfilter verstopfen würden, zum anderen wegen der Stromausfälle.

Dem nicht genug bedrohen auch pyroklastische Ströme und Lahare das Umland des Fuji. Letztere könnten besonders entlang von Flussläufen und Abwasserkanälen große Zerstörungen anrichten.
Eine zentrale Botschaft des Videos: Im Ernstfall zählt Zeit. Abhängig von der Windrichtung könnte die Asche Tokio bereits nach zwei Stunden erreichen. Die Stadt empfiehlt daher, bereits in einer frühen Ausbruchsphase nicht zu reisen, sondern zunächst Informationen einzuholen und in Innenräumen zu bleiben.

Doch es wurde nicht nur ein KI-Video erzeugt, sondern es ging auch eine spezielle Website online die über Notfallmaßnahmen informiert. Zudem finden sich Verhaltenstipps, die sich an Einwohner ebenso wie an Touristen richten. Eine weitere Seite gibt im Ernstfall Aschefallprognosen heraus. Empfohlen wird, Vorräte für drei Tage anzulegen, Staubschutzmasken und Schutzbrillen parat zu haben sowie einen Kommunikationsplan für den Fall von Stromausfällen.

Die Simulation steht im Einklang mit den im März 2025 vorgestellten Regierungsrichtlinien zum großräumigen Aschefall. Diese unterscheiden drei Belastungsstufen – von wenigen Zentimetern bis über 30 Zentimeter – und raten, unnötige Bewegungen während des Ascheregens zu vermeiden. Tokio setzt damit auf Aufklärung, um Panik zu verhindern und die Bevölkerung auf ein realistisches Worst-Case-Szenario vorzubereiten.

Warum wurde ausgerechnet jetzt damit begonnen, ein entsprechendes Informationssystem zu generieren? Bereits im Jahr 2022 gab Geophysiker Hiroki Kamata zu bedenken, dass Erdbeben entlang von Störungszonen in Vulkannähe auch eine Eruption triggern könnten. Damals empfahl er entsprechende Vorbereitungen.

Hier der Link zum Video auf Youtube.

Taiwan: Drucksteigerung unter Tatun-Vulkangruppe

Forscher entdecken unterirdische Veränderungen in der Tatun-Vulkangruppe in Taiwan – bahnt sich ein Ausbruch an?

Taiwan steht aufgrund seiner zahlreichen Erdbeben häufig in den Schlagzeilen – allein in diesem Jahr gab es bereits mehr als 100 Erdbeben mit Magnituden über 4,0. Doch wie in vielen Ländern entlang des Pazifischen Feuerrings sind nicht nur Erdbeben, sondern auch Vulkanausbrüche Teil der geologischen Realität. Der bislang letzte Ausbruch in Taiwan ereignete sich 1853, als der Inselvulkan Kueishantao vor der Nordostküste aktiv wurde. In manchen Datenbanken wird die Insel China zugerechnet – je nachdem, ob die Unabhängigkeit Taiwans anerkannt wird oder nicht.

Gegenstand aktueller Untersuchungen war jedoch nicht dieser Inselvulkan, sondern die Tatun-Vulkangruppe nahe der Hauptstadt Taipeh, in der mehr als sieben Millionen Menschen leben.

Der letzte gesicherte Ausbruch eines Vulkans der Tatun-Gruppe liegt etwa 6.000 Jahre zurück. Einige Studien deuten jedoch auf eine jüngere Aktivität vor rund 1.350 Jahren hin. Seit 2019 registrierten Forscher einen deutlichen Anstieg der Seismizität unter der Vulkangruppe und nutzten diesen Befund als Ausgangspunkt für weiterführende Untersuchungen. Mithilfe seismischer Tomografie und computergestützter Bildgebung entdeckten sie unter dem Vulkan Chihsin die Bildung bzw. Vergrößerung eines Fluidaufstiegskanals. Dieser befindet sich unter der bekannten Dayoukeng-Fumarole und reicht fast bis in 4 Kilometer Tiefe. Die Vergrößerung des Aufstiegskanals geht mit einer Drucksteigerung des Fördersystems einher.

Darüber hinaus fanden die Wissenschaftler in Tiefen zwischen 3 und 4 Kilometern eine weitere großflächige Anomalie in Form von abweichenden Erdbebenwellengeschwindigkeiten. Sie interpretieren diese Struktur als mögliche Magmenansammlung, aus der die Fluide stammen, die an der Fumarole austreten.

Die Forscher gehen davon aus, dass sich der Vulkan seit etwa 2014 in einer Phase zunehmender Unruhe befindet und sich womöglich auf einen Ausbruch vorbereitet. Je nach Größe einer möglichen Eruption könnte auch die nahegelegene Metropole Taipeh – nur rund 15 Kilometer von den Ausläufern der Vulkangruppe entfernt – betroffen sein. Ein solches Ereignis könnte nicht nur lokal verheerend wirken, sondern auch die internationalen Finanzmärkte erschüttern, da Taipeh ein bedeutendes Wirtschaftszentrum ist. (Quelle: nature.com)