Neue Forschung enthüllt Magmenintrusionen am Fournaise

  • Forscher führten 3 Jahre lang Magnetfeldmessungen am Fournaise durch.
  • Sie detektierten durch Hitzeeinwirkung entstandene Entmagnetisierungszonen im Untergrund.
  • Sie korrelierten zeitlich und räumlich mit Magmenintrusionen unter dem Vulkan.

Mit Hilfe von Magnetfeldmessungen wurden Intrusionen am Fournaise kartiert

Immer mehr Forschungen bemühen sich darum, den Untergrund unter Vulkanen sichtbar zu machen, um Magmenkörpern und den Förderwegen des Magmas auf die Spur zu kommen, in der Hoffnung, ein besseres Verständnis der im Verborgenen ablaufenden vulkanischen Prozesse zu erlangen. In diesem Kontext ist eine Studie zu verstehen, die von Forschern zweier französischer Universitäten durchgeführt wurde. Bei diesen Einrichtungen handelt es sich um die Universität Clermont Auvergne und die Universität La Réunion. Kein Wunder, dass die Forschenden sich als Studienobjekt den Vulkan Piton de la Fournaise aussuchten, der im französischen Überseedepartment der Insel La Réunion liegt. Beim Piton Fournaise handelt es sich um einen sehr aktiven Schildvulkan vom Hawaii-Typ, der im letzten Jahr zweimal ausbrach.

In der Studie ging es um die Beeinflussung des Magnetfeldes infolge magmatischer- und vulkanischer Aktivität. Insbesondere wirkt sich ein verstärkter Wärmefluss auf die Stärke des lokalen Magnetfeldes aus und eine Änderung in der Gesteinsmagnetisierung lässt Rückschlüsse auf das magmatische Geschehen im Untergrund zu. Auch Risse durch vulkanotektonische Beben lassen sich so aufspüren. Neu ist der Ansatz mit den gewonnen Magnetisierungsdaten mittels KI-gestützter Bildgebungsverfahren ein Abbild des Untergrunds zu erzeugen, das insbesondere Aufstiegswege und Akkumulationen von Gesteinsschmelzen darstellen kann: eine Aufheizung des Gesteins entmagnetisiert dieses, wodurch man entlang von zweidimensionalen Profilen Entmagnetisierungszonen detektieren kann, entlang derer Schmelze aufgestiegen ist und sich ggf. akkumulierte. Zusammen mit anderen geophysikalischen Methoden wie der Messung des elektrischen Widerstandes des Untergrunds und InSAR Bodendeformationsmessungen lassen sich Schmelzansammlungen gut lokalisieren und können zur Volumenbestimmung intrudierter Schmelzkörper herangezogen werden. Ein Fokus der Forscher bestand auch darin, die zeitlichen Veränderungen der Untergrundstrukturen des Vulkans zu erfassen. So wurden im Zeitraum 2017-2020 zahlreiche Messungen entlang eines 3780 m langen Profils durchgeführt, das in Ost-Westrichtung verlief und den Hauptkrater Dolomieu schnitt. Den Forschern gelang es dabei 18 Intrusionen festzustellen, von denen 13 mit Eruptionen assoziiert waren.

Die Forscher fanden heraus, dass „die zeitliche Entwicklung der magnetischen Anomalien stark mit den Tiefen und Volumina der magmatischen Intrusionen entlang des aktiven Hauptgebiets korrelieren. Die Forschungsergebnisse eröffnen neue Perspektiven für die Untersuchung der räumlich-zeitlichen Veränderungen magmatischer, hydrothermaler und mechanischer Veränderungen und Alterationsprozesse innerhalb vulkanischer Gebilde.“ (Quelle: AGU)