Mauritus-Region: Starkes Erdbeben Mw 6,3

Starkes Erdbeben Mw 6,3 erschüttert Indischen Ozean – Mauritius 1000 Kilometer entfernt

Datum 26.09.24 | Zeit: 19:19:29 UTC |  -17.198 ; 66.597 | Tiefe: 10 km | Mw 6,3

Ein starkes Erdbeben MW 6,3 manifestierte sich gestern Abend in einer entlegenen Region des Indischen Ozeans, die gut 1000 Kilometer von Mauritius entfernt liegt, vom EMSC aber trotzdem zu dieser Region gezählt wurde, weil es wohl keine nähere Besiedelung gibt. Das Hypozentrum wurde in 10 Kilometern Tiefe fixiert.

Das Beben ereignete sich am Mittelozeanischen Rücken des Indischen Ozeans, der neudeutsch Mid Indian Ocean Ridge (MIOR) genannt wird. Hierbei handelt es sich um einen wenig erforschten Ozeanrücken entlang der divergenten Plattengrenze zwischen der Afrikanischen Kontinentalplatte und der Indoaustralischen Platte. Beiderseits der Plattengrenzen wölbt sich die Kruste zu einem submarinen Gebirgszug auf, der einen Gebirgsrücken bildet. Durch die Spreizung entlang der Plattengrenze wird die Ozeankruste ausgedünnt und es entsteht ein Riss, entlang dem Magma aufsteigt und neue Kruste gebildet wird. Normalerweise gibt es entlang solcher divergenten Plattengrenzen eine Vielzahl unterseeischer Vulkane, die aber nur selten Vulkaninseln bilden, sowie hydrothermale Quellen. Im Fall des MIOR finden sich am Südende der Plattengrenzen mehrere Vulkaninseln wie die Crozet-Inseln. Die bekannten Inseln Mauritius und La Réunion, die auch im Indischen Ozean liegen, befinden sich allerdings abseits der MIOR und verdanken ihrer Existenz einen Hotspot.

Die Mittelozeanischen Rücken bilden übrigens mit einer Länge von gut 60.000 Kilometern den längsten zusammenhängenden Gebirgszug der Welt. Der Mid Indian Ocean Ridge erstreckt sich im zentralen und südlichen Teil des Indischen Ozeans, beginnend vom Golf von Aden im Nordwesten bis zur Crozet-Inselregion im Südwesten.

Erdbeben Mb 5,1 nahe Addis Abeba in Äthiopien

Der Golf von Aden ist mit dem Ostafrikanischen Riftvalleys verbunden, in dessen Nähe es ein weiteres erwähnenswertes Erdbeben gab: Am Rand des Afar-Dreiecks – in dem Vulkane wie der Erta Alé liegen – gab es nahe der äthiopischen Hauptstadt Addis Abeba eine Erschütterung der Magnitude Mb 5,1. Das Hypozentrum lag ebenfalls in 10 Kilometern Tiefe.

Schweiz: Mehrere schwache Erdbeben

Auffallend hohe Seismizität im Bereich der Schweizer Alpen und im Grenzgebieten zu Deutschland und Frankreich

Schaut man sich die Shakemap beim EMSC an, dann fallen die zahlreichen schwachen Erdbeben auf, die in den vergangenen Tagen vermehrt im Bereich der Schweizer Alpen, aber auch entlang der Grenzgebiete zu Frankreich und Deutschland aufgetreten sind. Tatsächlich gab es am vergangenen Wochenende auch schwache Erdbeben in Süddeutschland, von denen eines laut Medienberichten am Hochstaufen bei Bad Reichenhall sogar die Magnitude 2,1 gehabt haben soll. Dieses Beben kann ich beim EMSC nicht nachvollziehen, wurde aber vom bayrischen Erdbebendienst bestätigt. Darüber hinaus zeigt das EMSC ein Beben der Magnitude 2,2 bei Basel an. Das Hypozentrum lag in 5 Kilometern Tiefe. Während die Erschütterungen dort oft mit Erdgasförderungen in Verbindung gebracht werden, hat man für einige der anderen Beben der letzten Tage eine andere Erklärung gefunden: Die Beben sollen aufgrund starker Regenfälle entstanden sein. Das stark zerklüftete Kalkgestein, das in vielen Regionen der Alpen zu finden ist, ist sehr wasserdurchlässig. Bei starken Regenfällen, wie sie seit Mitte September in der Alpenregion oft vorkamen, versickert das Wasser schnell und erhöht den Druck in den Gesteinsporen. Dieser Druck führt zu Schwarmbeben – mehrere kleinere Erdbeben in kurzer Abfolge, meist mit einer Magnitude zwischen eins und zwei. Diese Beben sind typisch für die Region. Darüber hinaus darf man nicht vergessen, dass die Alpen eine tektonisch aktive Region sind und sich immer noch anheben. Die Prozesse der Orogenese können ebenfalls Erdbeben verursachen.

Erdbeben in der Auvergne

Eine ähnlich hohe Anzahl an Erdbeben mit geringen Magnituden wurde in den letzten Tagen auch in Frankreich festgestellt. Neben der Region Basel-Straßburg wurde auch die Auvergne von mehreren Erschütterungen heimgesucht. Hier liegt das französische Äquivalent zur Vulkaneifel, mit dem Unterschied, dass manche Autoren hier einen Vulkanausbruch eher für möglich halten als bei uns in der Eifel.

Sulawesi: Erdbeben M 6,0 am 23.09.24

Starkes Erdbeben in großer Tiefe erschütterte indonesische Insel Sulawesi

Datum 23.09.24 | Zeit: 19:51:03 UTC |  -0.061 ; 122.827 | Tiefe: 152 km | Mw 6,0

Auf der indonesischen Insel Sulawesi ereignete sich gestern Abend um 19:51 UTC (03:51 WIB) ein starkes Erdbeben der Magnitude 6,0. Das Epizentrum lag 72 km südlich von Gorontalo. Die Provinzhauptstadt Manado befindet sich 283 Kilometer nördlich des Epizentrums. Das Beben ereignete sich offshore im Golf von Tomini, der tektonisch vom Gorontalo-Becken geprägt wird. Das Hypozentrum lag in einer Tiefe von 153 km, was bedeutet, dass das Beben bereits im oberen Erdmantel stattfand.

Trotz der großen Tiefe des Erdbebenherds wurde der Erdstoß von den Bewohnern der Region deutlich gespürt. Es liegen keine Meldungen über größere Schäden vor, aber es könnten dennoch Risse in Gebäuden und Straßen entstanden sein.

Tektonisches Setting von Sulawesi

Die Tektonik der Region ist äußerst komplex. Die Kollision der Indoaustralischen, Eurasischen und Pazifischen Platte bestimmt das Geschehen, da diese Platten im Bereich von Sulawesi aufeinandertreffen. In dieser Region ist die Erdkruste in mehrere Kleinplatten zerbrochen, die den großen Kontinentalplatten vorgelagert sind. Rund um das Gorontalo-Becken verlaufen mehrere große Störungszonen, von denen einige als Subduktionszonen angelegt sind. Dazu gehören der North-Sulawesi-Trench, der East-Sangihe-Thrust und der Tolo-Thrust im Süden. Der Tolo-Thrust ist über die Matano-Fault und der großen Palu-Koro-Blattverschiebung im Westen mit dem North-Sulawesi-Trench verbunden. Die Tiefe des Hypozentrums des aktuellen Erdbebens lässt vermuten, dass das Beben durch Spannungen in einem subduzierten Stück Erdkruste ausgelöst wurde, das in den Erdmantel abgetaucht ist, ohne zu schmelzen, und schließlich versagte.

Vulkane in der Nähe des Epizentrums

In der Region gibt es nicht nur viele Störungszonen, sondern auch aktive Vulkane. Auf Sulawesi sind die Vulkane Lokon und Soputan die bekanntesten Feuerberge. Beide Vulkane standen vor etwa 10 Jahren häufig in den Schlagzeilen, sind jedoch seit den starken Erdbeben von 2018 deutlich ruhiger geworden. Nördlich von Manado liegen die Inselvulkane Ruang, Karangetang und Awu, die noch im Frühjahr besonders aktiv waren. Auf der benachbarten Insel Halmahera sind es vor allem die Vulkane Ibu und Dukono, die weiterhin in Eruption begriffen sind.

Island: Erdbeben bei Askja und Krysuvik

Erhöhte Erdbebenaktivität auf Island setzt sich fort – Vulkansysteme Askja, Krysuvik und Fagradalsfjall betroffen

Die erhöhte Erdbebenaktivität, die wir bereits in den letzten Tagen auf Island sehen konnten, hielt auch in den letzten 24 Stunden weiter an. Besonders auffällig sind die Beben im Bereich des Zentralvulkans Askja, der unweit des Gletschers Vatnajökull im Hochland liegt. Einige Forscher vermuten, dass Askja mit dem Bardarbunga-System unter dem Gletscher gekoppelt ist. Als gesichert sieht man an, dass der Tafelvulkan Herdubreid zum Askja-System gehört. Die IMO-Tabellen zeigen für den gesamten Bereich 39 Erschütterungen an, von denen sich 29 im Bereich Askja/Herdubreid zutrugen. Die Bodenhebung in der Askja-Caldera geht weiter.

Eine leichte Bodenhebung wird inzwischen auch wieder im Krysuvik-System registriert, wo es ein kleines Schwarmbeben westlich des Kleifarvatn und in der Nähe des Keilir gegeben hat. Darüber hinaus ist auch die Gegend um den Fagradalsfjall weiter seismisch sehr aktiv. Die Beben hier sind sehr schwach und haben Hypozentren in 8 Kilometern Tiefe. Wahrscheinlich stehen diese Erschütterungen mit dem großen Magmenreservoir in Verbindung, das unter dem Fagradalsfjall liegt und den flacher gelegenen Magmenkörper unter Svartsengi speist. Über die Vorgänge in dem tiefen Speichersystem lässt sich nur spekulieren. Möglicherweise versucht sich Magma wieder, einen direkten Weg nach oben zu bahnen, um am Fagradalsfjall zu eruptieren.

Im Bereich der Reykjanes-Halbinsel manifestierten sich innerhalb von 48 Stunden 87 Erschütterungen. Direkt entlang der Sundhnukur-Eruptionsspalte ist es aus seismischer Sicht ruhig und es gibt nur vereinzelte Beben. Dafür geht die Bodenhebung im gesamten Svartsengibereich ungebremst weiter. Der Boden hob sich seit Ende der letzten Eruption um gut 8 Zentimeter.

Erdbeben gibt es auch an anderen Stellen, wie im Bereich der Snæfellsnes-Halbinsel im Westen der Insel. Auf ganz Island wurden übrigens 152 Beben festgestellt.

Zusammenfassung:

  • 152 Erdbeben innerhalb von 48 Stunden auf ganz Island
  • 29 Beben im Askja-System
  • 87 Erschütterungen auf Reykjanes
  • Bodenhebung an den Bebenlokationen

Bali: Erdbeben der Magnitude 4,7

Erdbeben Mb 4,7 erschütterte Bali – Vulkane in der Nähe

Datum 20.09.24 | Zeit: 23:26:17 UTC | -8.524 ; 115.337 | Tiefe: 10 km | Mb 4,7

Bereits in der Nacht von Freitag auf Samstag (Ortszeit) ereignete sich ein Erdbeben der Magnitude 4,7 im beliebten Touristen-Hotspot Bali (Indonesien). Das Epizentrum wurde vom EMSC 8 km östlich von Ubud lokalisiert und lag 19 Kilometer nördlich der Inselhauptstadt Denpasar. Der Erdbebenherd befand sich in einer Tiefe von 10 Kilometern, und der Erdstoß war auf der gesamten Insel deutlich spürbar.

Die Auswirkungen des Bebens wurden als leicht bis mittelschwer beschrieben. Bisher gibt es keine Berichte über größere Schäden, jedoch können Gebäuderisse oder ähnliche leichte Beschädigungen nicht ausgeschlossen werden.

Bali befindet sich in einer seismisch aktiven Region, die durch die Subduktion der Indo-Australischen Platte unter die Eurasische Platte geprägt ist. Diese tektonische Konvergenzzone entlang des Sundabogens zählt zu den aktivsten Erdbebenregionen der Welt. Regelmäßige Spannungsfreisetzungen entlang dieser Subduktionszone führen häufig zu Erdbeben und gelegentlich zu Tsunamis. Die seismische Aktivität auf Bali wird stark durch die Plattenbewegungen und geologischen Strukturen im Indischen Ozean beeinflusst.

Besonders interessant ist das Erdbeben auch im Kontext der vulkanischen Aktivität auf Bali, da sich in der Region mehrere aktive Vulkane befinden, darunter der Batur und der Gunung Agung. Der Gunung Agung brach zuletzt im Jahr 2017 aus. Die Eruption verlief zwar milder als erwartet, führte jedoch zu großem Interesse bei Urlaubern, da Evakuierungen im Umfeld des Vulkans notwendig wurden. Auch der Flugverkehr war zeitweise aufgrund von aufsteigender Vulkanasche gestört.

Vulkane auf Bali können bestiegen werden

Im vergangenen Jahr wurde berichtet, dass aus religiösen Gründen der Aufstieg auf die balinesischen Vulkane verboten worden sei, nachdem mehrere Touristen sich auf den Vulkanen teilweise entblößt hatten, um Fotos zu machen. Tatsächlich wurde ein solches Verbot erlassen, doch es scheint, dass es nicht konsequent durchgesetzt wurde. Mitglieder unseres Vulkanvereins, die Anfang September Bali besuchten, berichteten, dass sie keine Schwierigkeiten hatten, die Vulkane zu besteigen und auch den Krater des Gunung Agung erreichten.

Griechenland: Erdbeben Mb 4,6 in der Ägäis

Vor der griechischen Küste im Bereich der Ägäis gab es ein Erdbeben Mb 4,6

Datum 22.09.24 | Zeit: 09:50:26 UTC |40.329 ; 24.116 | Tiefe: 10 km | Mb 4,6

Vor der Küste Griechenlands bebte es mit einer Magnitude von 4,6. Vorläufigen Angaben vom GFZ zufolge lag das Hypozentrum in einer Tiefe von weniger als 10 Kilometern. Das Epizentrum wurde 17 km östlich von Néa Róda in der Region Zentralmakedonien festgestellt. Somit lag es offshore in der Ägäis. Die Verortung des EMSC sieht hingegen ein wenig anders aus: Demnach manifestierte sich das Beben auf der Athos-Halbinsel, auf der Néa Róda liegt und die ihrerseits mit der größeren Chalkidiki-Halbinsel verbunden ist.

Der Erdstoß ereignete sich um 09:50:26 UTC (Lokalzeit + 2 Stunden) und wurde in einem Umkreis von 200 Kilometern von zahlreichen Bewohnern der Gegend deutlich wahrgenommen. Augenzeugen berichten von einem starken Erdstoß, der ein tief grummelndes Geräusch verursachte. Berichte über eventuelle Schäden liegen noch nicht vor, es ist jedoch möglich, dass es zu leichten Schäden wie Gebäuderissen gekommen ist.

Es gab mehrere schwächere Vor- und Nachbeben, die einen kleinen Bebencluster bilden. Mit weiteren Erschütterungen ist zu rechnen.

Das tektonische Umfeld auf Chalkidiki ist komplex und wird von den Überschiebungen des Circum-Rhodope-Gürtels geprägt, in dem zahlreiche Störungszonen verlaufen. Die geologischen Strukturen von Chalkidiki sind das Ergebnis der alpidischen Orogenese, die durch die Kollision von Mikroplatten und die Gebirgsbildung im Mittelmeerraum entstanden ist. Übergeordnet spielt die Kollision von Afrika mit Europa eine große Rolle im Ägäisraum, wobei die Ägäische Platte gegen Europa drückt. Das aktuelle Erdbeben ereignete sich wahrscheinlich an der regionalen Pirgos-Verwerfung, die infolge der anhaltenden plattentektonischen Prozesse unter Spannung geriet.

Island: Erdbeben M 2,9 im Krýsuvík-System

Das Krýsuvík-System auf Island wurde von einem Erdbeben M 2,9 erschüttert

Heute Morgen ereignete sich um 05:52:01 UTC ein Erdbeben der Magnitude 2,9 im Krýsuvík-Spaltensystem auf der Reykjanes-Halbinsel. Das Hypozentrum lag in 5,6 Kilometern Tiefe. Das Epizentrum wurde 5,6 km nördlich von Krýsuvík lokalisiert. Tatsächlich manifestierte sich das Beben jedoch 2 km westlich des Kleiftavatn und ebenso weit entfernt vom Thermalgebiet Seltún, das südlich des Epizentrums liegt. In diesem Gebiet haben wir in den vergangenen Monaten und Jahren häufig Erdbeben beobachtet, die mit dem Erwachen der vulkanischen Aktivität auf der Reykjanes-Halbinsel zusammenhingen. Ein Erdbebenschwarm blieb aktuell aus. Im Herbst letzten Jahres haben GPS-Messungen im Krýsuvík-System eine leichte Bodenhebung festgestellt, doch seit März hat sich der Boden um 2 Zentimeter abgesenkt.

(Update: Zunächst wurde der nachfolgende Erdbebenschwarm beim IMO nicht angezeigt, aber es sieht doch so aus, als hätte das Beben einen Schwarm ausgelöst, denn mittlerweile gibt es in dem Areal einen ordentlichen Cluster zu sehen.)

Anders sieht es im benachbarten Fagradalsfjall-System aus, wo es im Laufe der Woche zahlreiche Erdbeben gab. Hier hat sich der Boden in diesem Monat um fast 2 Zentimeter gehoben. Diese Bodenhebung steht wahrscheinlich im Zusammenhang mit der Intrusion unter Svartsengi. Dort hält die Bodenhebung weiterhin an und beläuft sich in diesem Monat auf fast 10 Zentimeter.

Anhaltende Seismizität bei der Askja

Im Bereich der Askja ist die Seismizität hoch, und seit gestern wurden 17 schwache Erdbeben in der Caldera registriert. Die Bodenhebung hält an, hat sich jedoch vom westlichen Rand des Öskjuvatn in den Norden verlagert. An der Messstation KASC nimmt die Hebung derzeit am schnellsten zu: die Hebungsrate liegt bei etwa 12 mm pro Monat. An dieser Messstation hat sich der Boden in den letzten 3 Jahren um gut 55 Zentimeter gehoben. An der Messstation OLAC stagniert die Hebung in den letzten Tagen bei 80 Zentimetern. Insgesamt hat sich die Bodenhebung in diesem Jahr verlangsamt, wofür es mehrere mögliche Gründe gibt: Entweder steigt weniger Magma aus der Tiefe auf, was daran liegen könnte, dass der Gegendruck im flach liegenden Magmareservoir zu groß geworden ist, oder der Boden kann sich nicht weiter ausdehnen, da er seine Elastizitätsgrenze erreicht hat. Der nächste logische Schritt wäre dann das Bersten des Deckgesteins des Magmenkörpers und die Bildung eines Gangs oder eine Eruption.

Campi Flegrei: Kleiner Erdbebenschwarm am 21.09.24

Leicht erhöhte Seismizität unter der caldera Campi Flegrei – 20 Erdbeben seit gestern

Nachdem es in den letzten Wochen im Bereich der süditalienischen Caldera Campi Flegrei recht still war, nahm die Erdbebentätigkeit gestern wieder leicht zu. Seitdem haben sich 20 schwache Erschütterungen ereignet, deren Magnituden im Bereich der Mikroseismizität lagen. Die stärkste Erschütterung brachte es auf eine Magnitude von 1,3 und hatte ein Hypozentrum in 800 m Tiefe. Die Beben traten in Tiefen bis zu 2,9 Kilometern auf und befanden sich somit innerhalb des Hydrothermalsystems des Vulkans. Die Epizentren streuten im westlichen Bereich von Pozzuoli um den Solfatara Krater herum.

Im jüngsten Wochenbericht des INGV für den Beobachtungszeitraum vom 9. bis 15. September 2024 ist nachzulesen, dass es in diesem Zeitraum nur 13 Erdbeben gab. Das stärkste erreichte eine Magnitude von 1,8. Auch die Entschleunigung der Bodenhebung wurde bestätigt: Sie liegt wieder bei 10 mm pro Monat, so wie es über viele Monate hinweg der Fall war, bevor es im letzten Jahr zu einer Serie stärkerer Erdbeben kam, die mit einer deutlichen Beschleunigung der Hebungsrate einhergingen. Obwohl sich die Situation scheinbar etwas beruhigt hat, besteht kein Grund zur Euphorie, denn die Bradyseismos-Phase hält grundlegend weiter an und es handelt sich um einen ungewöhnlich langen Zyklus. Solange nicht über mehrere Monate Subsidenz beobachtet wird, kann es jederzeit zu einer erneuten Verschärfung der Situation kommen, begleitet von spürbaren Erdbeben, die auf Dauer auch die Infrastruktur der Region beeinträchtigen könnten.

Die geochemischen Daten zeigen ebenfalls keinen nachhaltig rückläufigen Trend, und es wird weiterhin viel Kohlendioxid ausgestoßen. Zwar kam es zeitweise zu einem Abfall der Gastemperatur der Pisciarelli-Fumarole auf 91 Grad, doch dies hing mit starken Regenfällen zusammen; danach stieg die Gastemperatur wieder auf 94 Grad Celsius, gemessen in 5 Metern Entfernung zur Fumarolenöffnung. Insgesamt setzt sich der langjährige Trend der Druckzunahme im Hydrothermalsystem fort. Ob die Aktivität letztendlich in einem Vulkanausbruch gipfeln wird, bleibt weiterhin ungewiss.

Grönland: Rätsel um ungewöhnliches Erdbebensignal gelöst

Klimawandel bedingter Eisrutsch auf Grönland löste Tsunami aus, der die Welt zum Vibrieren brachte

Im letzten September ging ein rätselhaftes Erdbebensignal um die Welt dass für Aufsehen in der Fachwelt sorgte. Das besondere an diesem Signal war, dass es neun Tage lang anhielt und auf Sensoren rund um den Globus registriert wurden. Es waren monotone Erdbebenwellen, die nur auf einer Frequenz schwangen. In akustische Wellen umgewandelt, hörte es sich wie ein gleichförmiges Brummen an.

Die Forscher um die Geologen Kristian Svennevig und Stephen Hicks fanden in einer Studie schließlich heraus, dass ein massiver Eisrutsch im abgelegenen Dickson-Fjord in Grönland die Ursache für das Erdbebensignal war. Über 25 Millionen Kubikmeter Gestein und Eis rutschten in den Fjord und lösten einen Megatsunami aus, dessen Wellen eine Höhe von 200 Metern erreichten – weit höher als die Tsunamis von 2004 in Südostasien oder 2011 in Japan. Allerdings war der Tsunami im Fjord gefangen und breitete sich nicht über die Ozeane aus. Dafür schwappten die Wellen im Fjord 9 Tage lang gut 10000 Mal hin und her und es entstand eine Schaukelwelle, die sich auf dass umliegende Gestein übertrug und so so die Erdvibration anregten.

Die Forscher sehen den Klimawandel als Ursache für den Erdrutsch, da das Abschmelzen von Permafrost und Gletschern den Untergrund destabilisiert. Das Ereignis verdeutlicht, dass der Klimawandel zunehmend Phänomene hervorruft, die bisher als undenkbar galten. Die Forscher weisen darauf hin, dass dies das erste Mal ist, dass der Klimawandel ein seismisches Ereignis von globaler Bedeutung ausgelöst hat. Seismische Wellen breiteten sich in kurzer Zeit nach dem Erdrutsch weltweit aus und erschütterten den gesamten Planeten.

Zukünftige Ereignisse dieser Art könnten häufiger auftreten, da der Klimawandel weiter voranschreitet. Der Permafrost taut auf, Gletscher schmelzen, und die Wahrscheinlichkeit von Erdrutschen und Megatsunamis nimmt zu. Dies stellt Wissenschaft und Gesellschaft vor neue Herausforderungen und erfordert ein Umdenken im Umgang mit den Auswirkungen des Klimawandels.