Studie: Kilauea und Mauna Loa teilen sich Magmenquelle

Der neue Lavasee am Kilauea. Im Hintergrund erkennt man den Mauna Loa. © HVO/USGS

Neue Studie belegt gemeinsame Magmaquelle von Kilauea und Mauna Loa

Obwohl die Eruption am Kīlauea weiterhin pausiert, steht dieser faszinierende Schildvulkan auf Big Island, Hawaii, einmal mehr im Fokus der Berichterstattung auf Vnet. Diesmal geht es um den Ursprung des Magmas, das am Vulkan eruptiert wird.

Es wird schon seit Längerem davon ausgegangen, dass sich Kīlauea eine Magmenquelle mit dem benachbarten Vulkan Mauna Loa teilt, der den Kīlauea deutlich überragt. Die These lautet, dass beide Vulkane von einer tiefen Mantelquelle über einen Plume mit Schmelze versorgt werden. Hinweise auf diese gemeinsame Magmenquelle liefern Erdbeben unter der Küstenebene bei Pāhala, die in Tiefen von mehr als 30 Kilometern auftreten und auf Magmenaufstieg hindeuten. Doch wo genau die Zone der gemeinsamen Magmenquelle liegt, ist umstritten.

Eine vor zwei Jahren veröffentlichte Studie untersuchte den Untergrund mithilfe der seismischen Tomografie und kam zu dem Schluss, dass unter Pāhala ein großer Magmenkörper liegt, von dem Fördersysteme zu beiden Vulkanen aufsteigen. Da sich die von den beiden Vulkanen geförderten Laven im Detail chemisch unterscheiden, sollte in diesem Modell das Magma während des Aufstiegs durch unterschiedliche Fördersysteme und in flach liegenden Reservoirs differenzieren.

Eine neue Studie, die Ende letzten Jahres im Journal of Petrology erschien und jetzt publik gemacht wurde, geht von einer anderen These aus. Die Forscher um Aaron J. Pietruszka von der University of Hawaii at Mānoa analysierten fast 200 Jahre alte Aufzeichnungen zur Lavachemie und fanden Hinweise darauf, dass beide Vulkane eine gemeinsame Magmaquelle innerhalb des hawaiianischen Plumes nutzen.

Demnach soll sich die Schmelze in der Asthenosphäre bilden bzw. sammeln. Aufsteigend aus dieser gemeinsamen Quelle kann sich das Magma über Jahrzehnte hinweg abwechselnd zum Kīlauea oder zum Mauna Loa bewegen.

Seit 2010 beobachtet das Forschungsteam eine Veränderung der Lavachemie am Kīlauea, die darauf hindeutet, dass Schmelze aus der gemeinsamen Quelle nun erstmals seit Mitte des 20. Jahrhunderts wieder zum Mauna Loa umgeleitet wird. Der Mauna Loa brach zuletzt 2022 aus. Zuvor ruhte er 38 Jahre lang – die längste bekannte Ruhephase in seiner Geschichte. Diese inaktive Zeit überschnitt sich weitgehend mit dem etwa 35 Jahre andauernden Puʻuʻōʻō-Ausbruch des Kīlauea, der nach der Leilani-Eruption von 2018 mit dem Einsturz der Gipfelcaldera endete.

Die Studie legt nahe, dass ein langfristiges Muster wechselseitiger vulkanischer Aktivität existiert, was auf eine magmatische Verbindung zwischen den beiden Vulkanen hindeutet. Veränderungen in der Lavachemie von Kīlauea und Mauna Loa scheinen miteinander zu korrelieren. Ein Beispiel dafür zeigt sich im späten 19. Jahrhundert, als der Mauna Loa besonders aktiv war, während der Kīlauea weniger häufig ausbrach. In dieser Zeit entwickelte sich die Lava des Kīlauea chemisch in eine spezifischere Richtung, was darauf zurückgeführt wird, dass Magma aus der gemeinsamen Quelle vorrangig in Richtung Mauna Loa transportiert wurde. Teile der tiefen Leiterbahnen des Fördersystems, die im Modell an ein verzweigtes Wurzelsystem erinnern, alternieren dabei zwischen den beiden Vulkanen, wobei die Hauptschlote unter dem jeweiligen Vulkan beständig bleiben.

Langfristige Prognosen zur vulkanischen Aktivität basieren bislang auf der Analyse vergangener Ausbrüche eines Vulkans. Die Studie weist jedoch darauf hin, dass die Überwachung der Lavachemie ein potenzielles Instrument zur Vorhersage der Eruptionsrate und -häufigkeit beider Vulkane über Jahrzehnte hinweg sein könnte. Sollte sich die chemische Zusammensetzung der Lava am Kīlauea weiterhin verändern, könnte dies auf eine künftige Zunahme der Aktivität am Mauna Loa hindeuten. Die Forscher planen, diese Veränderungen weiter zu beobachten, um ihre Vorhersagen über das zukünftige Eruptionsverhalten zu überprüfen.

(Quellen: Journal of Petrology, Pressemeldung HVO)

Vulkane: Studie zu Magmenkörpern enthüllt erstaunliches

Crater Lake in den USA. © Epmatsw, Wikipedia Lizenz der CC

Studie über Magmenkörper zeigt, dass auch viele inaktive Vulkane über ein aktives Speicherreservoir mit Schmelze verfügen

In der Wissenschaft ist es ein seit langem diskutiertes Thema, ab wann ein Vulkan als ruhend oder erloschen gilt und ob nur in Eruption befindliche Vulkane als aktiv klassifiziert werden oder auch Vulkane die potenziell in Kürze ausbrechen könnten oder vor kurzem noch eruptierten.

Im Allgemeinen heißt es in der Vulkanologie, dass ein Vulkan der länger als 10.000 Jahre nicht ausgebrochen ist, als erloschen anzusehen ist. Doch in den letzten Jahren mehren sich die Hinweise, dass das so nicht stimmen kann: besonders große Calderavulkane können über lange Zeiträume inaktiv sein und erzeugen in Abständen von mehreren 10.000 oder sogar 100.000 Jahre sogenannte Supervulkaneruptionen. Zwar sind diese Vulkane zwischenzeitlich auch oft aktiv und generieren normale Eruptionen, doch auch die Zeiträume zwischen diesen Eruptionen können stark variieren. So liegt die letzte Supervulkaneruption der Yellowstone-Caldera ca. 640.000 Jahre zurück, während die letzte normale Eruption im Pleistozäne, also vor mehr als 12.000 Jahren stattfand. Die jüngste nachgewiesene Eruption manifestierte sich vor 70.000 Jahren, als ein Lavastrom austrat. Dennoch wies eine andere Studie hier einen großen Magmenkörper nach, dessen Schmelze sich horizontal verlagerte, also fließfähig ist.




Eine weit verbreitete Annahme geht davon aus, dass sich das Magmaspeichersystem eines lange nicht ausgebrochenen Vulkans zurückbildet und mit der Zeit auflöst. Unter einem lange ruhenden Vulkan dürfte es dann keinen Magmenkörper mit Schmelzanteil mehr geben. Ob dies wirklich so ist, wollte ein Forscherteam der Cornell University und des U.S. Geological Survey (USGS) wissen. Die Wissenschaftler um Geoffrey A. Abers untersuchten dafür Vulkane der US-amerikanischen Kaskadenkette, die sich in verschiedenen Lebensstadien befinden. Mit Hilfe eines Verfahrens, dass sich an die seismische Tomografie anlehnt, aber mit einem weitaus kleinerem seismischen Netzwerk auskommt, nutzen sie Laufzeitunterschiede von Erdbebenwellen um Magmenkörper unter den Vulkanen aufzuspüren.

Konkret untersuchten die Geoforscher den Untergrund der Vulkane Crater Lake, Lassen Peak, Mount Hood, Mount St. Helens, Mount Rainier und Newberry Volcano die zwar alle noch nicht als erloschen gelten und innerhalb der letzten 10.000 Jahren mindestens einmal eruptierten, sich aber in unterschiedlichen Ruhestadien befinden. Am längsten ist die letzte Eruption des Crater-Lake-Vulkans her, der vor ca. 4870 Jahren das letzte Mal ausbrach, während der Mount St. Helens zuletzt im Jahr 2008 eruptierte.

Das erstaunliche Ergebnis der Studie ist, dass unter allen 6 Vulkanen Magmenkörper nachgewiesen werden konnten, die sogar noch einen Schmelzanteil enthielten. Damit scheint klar zu sein, dass nicht allein die Anwesenheit von Schmelze in einem Magmenkörper ein hinreichendes Kriterium für eine bevorstehende Eruption ist. Zudem bleibt das Magma deutlich länger in schmelzflüssigem Zustand als gedacht und es stellt sich die Frage, ob die Schmelze unter einem scheinbar ruhenden Vulkan nicht auch ständig erneuert und ausgetauscht wird.

Um besser funktionierende Vorhersagemodelle zu entwickeln, erscheint es zwingend wichtig zu sein, weitere Eruptionsauslöser zu erforschen. Wichtig erscheint es mir auch zu eruieren, wie es sich bei Vulkanen verhält, die länger als 10.000 Jahre nicht ausgebrochen sind. (Quelle: nature.com)

Erdmantel möglicherweise homogener als angenommen

Studie zur Zusammensetzung des Erdmantels anhand von Lavaproben von Hot-Spot Vulkanen verändert möglicherweise das Weltbild

Über die genaue Beschaffenheit des Erdmantels und die Entstehung von Magma wurde schon so mach eine Studie erstellt, doch bis jetzt sind einige Aspekte der Magmen-Entstehung genauso rätselhaft wie die genaue Beschaffenheit des Erdmantels, in dem sich die Schmelze durch komplexe Vorgänge bildet und verändert. Bisherige Modelle, die die Entstehung von Magma an sogenannten Hotspots erklären sollten, könnten dabei unnötig komplex sein, wie eine Studie des Schwedischen Naturkundemuseum zeigt, die im September in Nature Geoscience veröffentlicht wurde und nun durch die Deutsche Presse geistert.

Die Geowissenschaftler Prof. Smit und Dr. Kooijman untersuchten Lavaproben von ozeanischen Hotspot-Vulkanen die für gewöhnlich basaltischer Natur sind sich aber in ihrer chemischen Zusammensetzung voneinander unterscheiden können, wobei es hauptsächlich zu großen Unterschieden in den Konzentrationen von Spurenelementen, Radiogenen und Isotopen kommt. Um diese unterschiedliche Zusammensetzungen zu erklären, nahm man bislang an, dass das Material des Erdmantels, aus dem die Hotspots bzw. Mantelplumes aufsteigen heterogener Zusammensetzung ist. Um diese Zusammensetzung zu erklären, bediente man sich Konstrukten von verschiedene Magmendomänen und alten „primordiale Reservoire“ im Erdmantel.

Als „primordiales Reservoir“ bezeichnet man eine Magmaquelle im Erdmantel, die seit der Entstehung der Erde nahezu unverändert geblieben sein soll. Solche Reservoirs wären theoretisch Überreste des Urmantels, der sich kurz nach der Entstehung der Erde bildete und seitdem nicht durch die Prozesse der Mantelkonvektion durchmischt wurde. Generell ist es aber schwer zu erklären, warum diese Durchmischung ausgeblieben sein sollte.

Die Forscher der Studie zeigten nun in einem mathematischen Modell, dass die chemischen Variationen der grundlegend basaltischen Laven, die von Vulkanen wie jenen auf Hawaii und den Kanaren gefördert werden aus einem einheitlichen Magma hervorgehen, das sich während des Aufstiegs vor der Eruption an einem Vulkan, durch Reaktion mit den umgebenden Gesteinen chemisch verändert.

Dies lässt darauf schließen, dass der Erdmantel chemisch viel homogener ist, als bisher angenommen, und dass basaltische Lava erst auf ihrem Weg zur Oberfläche ihre charakteristische chemische Zusammensetzung annimmt.

Die neue Untersuchung stellt die bisherigen Annahmen zu Hotspot-Lava und dem Erdmantel grundlegend infrage. Die Forschenden vergleichen dies mit der Evolution des Menschen, die einen gemeinsamen Ursprung hat und sich in unterschiedlichen Regionen unterschiedlich entwickelte.

Die Studie liefert auch neue Erkenntnisse über Verbindungen zwischen ozeanischer Hotspot-Lava (OIBs) und bestimmten kontinentalen Basaltlaven, die beispielsweise diamanthaltige Kimberlite enthalten. Diese unterschiedlichen Laven könnten denselben „magmatischen Ursprung“ haben.

Diagramm zur Entstehung und Differentiation der Ozeanischen Inselbasalte. © nature.com/ Matthijs A. Smit & Ellen Kooijman

Wo genau der Ursprung der primären Schmelzen liegt und wie er aussieht, darüber gibt die Studie allerdings keine genaue Auskunft. Und ganz ohne Konstrukte kommt das mathematisch erstellte Modell des Erdmantels dann doch nicht aus, denn es wird eine Zone im unteren Erdmantel postuliert, die als verarmt in Bezug auf bestimmte Elemente bezeichnet wird, und eine davon isolierte Schicht, die sich im Erdaltertum bildete und Ursprung einer angereicherten Mantelflüssigkeit sein soll, die sich im oberen Erdmantel nahe der Asthenosphäre ansammelte. Die im Mantelplume aufsteigende Schmelze interagiert mit der Mantelflüssigkeit und den Gesteinen der Erdkruste und soll so die chemische Vielfalt der Ozeanischen Inselbasalte hervorbringen.

(Quellen: Nature Geoscience (https://phys.org/news/2024-09-envisions-earth-mantle-uniform-reservoir.html), Pressemeldung phys.org)

Island: Magma aus verschiedenen Quellen

Ausbruch auf der Sundhúnkur-Spalte. © Marc Szeglat

Neue Lavaprobenanalysen der Sundhnúkur-Eruptionen verblüffen Forscher – Magma stammt aus unterschiedlichen Quellen

Eine neue Studie, die gestern im Fachmagazin Science veröffentlicht wurde und über die der isländische Fernsehsender RUV berichtete, brachte Überraschendes zutage: Das Magma, aus dem die Lava der verschiedenen Ausbrüche der Sundhnúkur-Kraterreihe seit Dezember letzten Jahres stammt, kommt nicht aus einer einzigen Quelle, sondern aus mehreren verschiedenen. Dieser Umstand erfordert eine Überarbeitung des bisherigen Modells der Magmaspeicher unter Svartsengi und Fagradalsfjall. Gleichzeitig erschwert die hohe Variabilität der Schmelzzusammensetzung die Vorhersage zukünftiger Eruptionen auf der Reykjanes-Halbinsel.

An der Studie arbeiteten 20 Wissenschaftler aus verschiedenen Institutionen unter der Leitung des Geowissenschaftlichen Instituts der Universität Reykjavik zusammen. Im Rahmen der Untersuchung entdeckten sie, dass die Lava der Eruptionen nicht aus einer einzigen Magmaquelle stammt, sondern dass verschiedene Magmalinsen in der Erdkruste miteinander interagieren und so die Vulkanausbrüche auslösen.

Die Forscher untersuchten Lavaproben, die bei den ersten vier Eruptionen der Serie an verschiedenen Stellen des Lavafelds gesammelt wurden. Während sich die chemische Schmelzzusammensetzung des Basaltmagmas innerhalb einer Eruptionsphase nur wenig veränderte, zeigten sich zwischen den einzelnen Ausbrüchen deutliche Unterschiede. Die Forscher sprechen nun nicht mehr von einem einzelnen Magmenkörper, in dem sich das Magma ansammelt, sondern von einer Magmendomäne, die sich in mittleren Tiefen der Erdkruste gebildet hat.

Die unerwartete chemische Vielfalt der Schmelze macht die Vorhersage zukünftiger Eruptionen komplizierter. Zunächst war man von einer gleichmäßigen chemischen Zusammensetzung der Lava ausgegangen, doch die Ergebnisse der Studie zeigen eine viel komplexere Dynamik im Magmasystem.

Magmadomäne unter Svartsengi. © Simon Matthews, University of Iceland.

Ein in der Studie veröffentlichtes Bild veranschaulicht diese Komplexität anhand eines Querschnitts von der Erdoberfläche bis in den Erdmantel. Es wird deutlich, dass das Magma im Fagradalsfjall aus der Grenzschicht zwischen Kruste und Mantel aufgestiegen ist, während das Magma in der Sundhnúkur-Kraterreihe überraschend vielfältig war, obwohl es aus der gleichen Magmakammer stammt. Die Ergebnisse tragen nicht nur zum Verständnis isländischer Vulkane bei, sondern liefern auch wichtige Hinweise für das globale Verständnis von Vulkansystemen. (Quellen: Science/RUV)

Island: Neue Erkenntnisse zur Herkunft des Magmas

Endphase der ersten Fagradalsfjall-Eruption. © Marc Szeglat

Studie zeigt, dass das Magma der ersten Fagradalsfjall-Eruption in der Erdkruste zwischengespeichert wurde

Seit 2021 faszinieren uns die Vulkanausbrüche auf Island. Die Eruptionen auf der Reykjanes-Halbinsel begannen mit den Fagradalsfjall-Feuern und setzten sich seit Oktober 2023 mit den Sundhnúkur-Feuern fort. An beiden, nur wenige Kilometer voneinander entfernten Lokationen, gab es mehrere Intrusionen und Spalteneruptionen, die große Mengen Lava förderten und ausgeprägte Lavafelder entstehen ließen. Wissenschaftler vermuten, dass diese Eruptionen nur die ersten einer Serie sind, die mehrere Jahrzehnte andauern und nach und nach auch auf weitere Spaltensysteme der Reykjanes-Halbinsel übergreifen könnten.

Um zukünftige Ereignisse besser vorhersagen zu können, ist das Verständnis der Eruptionsmechanismen entscheidend. Dazu gehört, wie das Magma entsteht, aufsteigt und gegebenenfalls in Magmenkörpern zwischengespeichert wird, bevor sich ein oberflächennaher magmatischer Gang bildet oder eine Eruption beginnt.

Ein internationales Team aus Geoforschern und Studenten unter der Leitung der Scripps Institution of Oceanography der UC San Diego sammelte fortwährend Lavaproben der basaltischen Eruptionen auf Island sowie von den Ausbrüchen auf La Palma (2021) und am Mauna Loa (2022) und analysierte sie im Labor. Es entstand eine detaillierte Zeitreihenanalyse der geochemischen Komponenten der Lavaproben. Mithilfe von Spektrometern wurden die elementaren Inhaltsstoffe der Gesteinsproben untersucht und die Signaturen bestimmter Isotope wie Osmium analysiert, um Hinweise darauf zu erhalten, unter welchen Bedingungen ein Magma entstanden beziehungsweise gespeichert wurde.

Osmium kommt in unterschiedlichen Isotopen vor, die durch radioaktiven Zerfall von Rhenium entstehen, welches in den Gesteinen der Erdkruste vorkommt. Spuren von Osmium in der eruptierten Lava gelten als Indizien dafür, dass eine Schmelze längere Zeit in der Kruste zwischengespeichert wurde, wo sie mit Krustenmaterial kontaminierte, bevor sie final aufstieg und in Form von Lava eruptierte. Die Forscher entdeckten in den Lavaproben der ersten Fagradalsfjall-Eruption von 2021 hohe Konzentrationen der Osmium-Isotope und schlossen daraus, dass das ursprüngliche Magma vor der Eruption längere Zeit in der Erdkruste zwischengespeichert wurde. Ähnliches konnten sie für die La Palma-Eruption nachweisen, während entsprechende Spuren in der Lava vom Mauna Loa fehlten.

Entgegen früheren Studien, die behaupteten, dass nur das Magma der ersten Eruptionstage der Fagradalsfjall-Eruption in der Erdkruste zwischengespeichert wurde, zeigt die neue Studie, dass auch die Schmelze des späteren Eruptionsverlaufs aus der Erdkruste stammt und nicht, wie bislang angenommen, direkt aus dem Erdmantel aufgestiegen ist. Erste bei späteren Eruptionen im Fagradalsfjall-Gebiet fehlten die Osmium-Isotope und man geht davon aus, dass die Schmelze ohne längeren Zwischenstopp in der Erdkruste eruptierte.

Die Forscher schließen daraus, dass die Bildung größerer krustaler Magmenkörper und die Interaktion der Schmelze mit dem Krustenmaterial eine Voraussetzung für basaltische Eruptionen sind, die große Volumina an Lava fördern. Nachfolgende Eruptionen nutzen dann freie Aufstiegswege, die als Expressautobahnen aus der Tiefe des Erdmantels angelegt sind. (Quelle: nature.com/articles/s41586-024-07750-0)

Island: Magma der Eruptionen aus gleicher Quelle

Magma aus den letzten 7 Eruptionen hat gleichen Ursprung – Lange Eruptionssequenz auf Reykjanes erwartet

Heute geht ein Bericht durch die Mainstreammedien, der auf Basis einer Pressemeldung der Universität Uppsala beruht, die wiederum im Zusammenhang mit dem Erscheinen einer neuen Studie steht, die von der Fachzeitschrift Terra Nova veröffentlicht wurde. Die meisten Artikel konzentrieren sich in ihrer Berichterstattung auf die bereits bekannte These, die von mehreren Forschern getragen wird, dass der Reykjaneshalbinsel eine lange Eruptionssequenz bevorstehen könnte. Diese könnte Jahrzehnte lang anhalten und verschiedene Spaltensysteme betreffen. Doch die Kernaussage der zugrundeliegenden Forschungsarbeit ist eine andere, denn die Forscher gingen insbesondere der Frage nach, ob die bisherigen Eruptionen aus der gleichen Magmenquelle gespeist wurden, worüber ebenfalls bereits viel geschrieben wurde.

Die Eruptionen begannen im Frühjahr 2021 am Fagradalsfjall und setzten sich im Winter 2023 entlang der benachbarten Sundhnukur-Kraterreihe fort. Die Forscher untersuchten Lavaproben der Eruptionen, um die Entstehungsgeschichte des zugrundeliegenden Magmas zu entschlüsseln. Die Daten aus den petrografischen Untersuchungen wurden in Korrelation zu Daten des Untergrunds gesetzt, die man mit Hilfe der seismischen Tomografie gewonnen hatte.

Obwohl es einige Variationen im Chemismus der Magmen gegeben hat, sind sich die Schmelzen der Eruptionen am Fagradalsfjall und bei Sundhnúkur so ähnlich, dass man von einer gemeinsamen Magmenquelle ausgehen kann. Diese soll sich in 9 bis 12 Kilometern Tiefe unter dem Fagradalsfjall befinden. Von dort geht ein vernetztes Fördersystem ab, in dem sich das Magma teilweise diagonal durch die Erdkruste bewegte und unterschiedlich lange unterwegs war. Möglich ist eine Zwischenspeicherung der Schmelzen, die bei Sundhnúkur eruptierten, in einem flacher gelegenen Zwischenspeicher unter Svartsengi. Es gibt einige Erdbebenmuster, die auf einen flacher liegenden Speicher hindeuten, doch eindeutig nachgewiesen werden konnte dieser Zwischenspeicher nicht.

Frances Deegan, Co-Autorin der Studie und Forscherin an der Universität Uppsala, verweist auf die Bedeutung der Studie, um sich auf zukünftige vulkanische Aktivitäten vorbereiten zu können. (Quellen: Pressetext, Studie)

Island: Petrografie der Lava entschlüsselt

Petrografie der Lava der aktuellen Sundhnukur-Eruption entschlüsselt – Zugrundeliegendes Magma wie beim Fagradalsfjall

Das Petrologische Institut der Universität von Reykjavik analysierte frische Lavaproben der Sundhnúkur-Eruption, die am 29. Mai begonnen hat und bis jetzt anhält. Das vorläufige Ergebnis der Untersuchungen wurde heute in einer Pressemeldung und bei nature.com veröffentlicht. Die Mineralogen untersuchten Proben, die am ersten und vierten Tag der Eruption gesammelt wurden. Zum Teil waren es Proben bereits erkalteter glasartiger Tephra und Lava von einem Lavastrom. Aus den Proben wurden unter anderem Dünnschliffe gefertigt, die im Polarisationsmikroskop betrachtet wurden, um den Mineralienbestand zu klassifizieren. Dieser bestand überwiegend aus Plagioklas, Olivin und Klinopyroxenkristallen, die im Falle der Tephra in einer glasartigen Matrix eingebettet waren. In den Proben der erkalteten Lava entdeckte man Mikrolithen, also winzigste Kristalle, die eine Matrix bilden. Mit Hilfe der Elektronenmikrosonde des Instituts für Geowissenschaften wurden die elementaren Bestandteile der Proben bestimmt.

Auf den ersten Blick ähnelt die Basaltlava jenem Material, das seit Dezember letzten Jahres bei den anderen Eruptionen entlang der Sundhnúksgígar gefördert wurde und enthält zwischen 6,2 und 7,0 Gewichtsprozent Magnesiumoxid, was typisch für tholeiitischen Basalt ist. Was aber aus dem Rahmen fällt, ist das Verhältnis zwischen Kaliumoxid und Titandioxid. Dieses Verhältnis liegt bei den Proben der aktuellen Eruption zwischen 0,13 und 0,14. Damit unterscheidet es sich erheblich von dem K₂O/TiO₂-Verhältnis der anderen Eruptionen entlang der Sundhnúksgígar, bei denen es Werte zwischen 0,21 und 0,23 annahm. Dafür ähnelt es aber jenem K₂O/TiO₂-Verhältnis der ersten Fagradalsfjall-Eruption im Jahr 2021. Daher vermuten die Forscher der Universität Reykjavik, dass die zugrunde liegende Schmelze, aus der die Lava entstand, eine ähnliche Entstehungsgeschichte wie das Magma der ersten Fagradalsfjall-Eruption hat. Möglicherweise gibt es eine Kopplung der beiden Systeme in einem tiefer gelegenen Magmenkörper an der Grenze zwischen Erdkruste und Erdmantel. Diese Grenze wird durch die Mohorovičić-Diskontinuität (kurz Moho) definiert. Forscher vermuten sie unter Island in 15 Kilometern Tiefe, wobei sie unter Kontinenten bis zu 70 Kilometer tief abtauchen kann.

Wer sich mit dem Thema eingehender beschäftigen will, empfehle ich die Studie zu Lesen, die bei natur.com erschienen ist.

Vulkan Ätna: Neue Studie belegt Aufladungsphasen

Studie kommt Auflade/Entlade Zyklen am Ätna auf die Spur und identifiziert Magmenquelle

Eine neue Studie von INGV-Wissenschaftlern kommt den Aufladungsphasen des sizilianischen Vulkans Ätna auf die Spur und zeigt, dass sich mehr Magma in einem Magmenköper sammelte, als man alleine anhand von Bodenhebungsdaten angenommen hätte. Mit Hilfe gravimetrischer Messungen kam man auch den Paroxysmen ein Stück weit auf die Spur.

Die Forscher beobachteten den Ätna zwischen 2009 und 2018. In mehreren Messkampagnen wurden mittels GPS Höhenmessungen durchgeführt, mit denen der vertikale Versatz der Ätnaflanken bestimmt wurde. Parallel dazu wurden Schweremessungen durchgeführt. Es wurden absolute Messwerte der Beschleunigung der Erdschwerkraft vorgenommen. Bei den Messungen kam heraus, dass es zwischen 2009 und 2011 zu einer Zunahme der Schwerkraft kam und sich auch der Boden hob. 2011 begann dann eine Serie von Paroxysmen, die bis 2014 dauerte. In dieser Zeit nahmen Gravitation und Bodenhebung ab.

Anhand der Messdaten entwickelten die Forscher ein Modell des Ätna-Untergrundes mit einem größeren Magmenkörper in 5 km Tiefe unter dem Meeresspiegel und einem deutlich kleineren Magmenkörper, der sich vermutlich 600 m unter dem Gipfel befindet. In der Aufladungsphase sammelte sich Magma in der mittleren Magmakammer in 5 km Tiefe, das aus einem weiteren Magmenkörper in größerer Tiefe aufstieg. Dieser könnte sich in 8 km Tiefe befinden.

Ein Modell schlägt einen Recycling-Prozess vor, in dem Magma bis in den oberen Magemnkörper aufsteigt, entgast und wieder bis in den mittleren Köper absinkt. Dadurch kommt es zu einer stärkeren Entgasung der Schmelze im mittleren Magmenkörper, wodurch die Schmelze zunehmend unter Druck der freigesetzten Gase geriet und komprimiert wurde. Dadurch konnte sich mehr Schmelze in diesem Magmenkörper ansammeln, als man anhand der Bodenhebung vermutet hätte. Als der Druck im mittleren Magmenkörper zu groß wurde, stieg das Magma schnell bis in den flach gelegenen oberen Magmenkörper auf und wurde kurz darauf in den Lavafontänen der Paroxysmen eruptiert. Immer, wenn dieser obere Magmenkörper voll war, kam es zu einem neuen Paroxysmus. Aus der Kombination von Bodensenkung und Gravitationsabnahme während des eruptiven Zyklus berechnete man das Magmenvolumen des mittleren Magmenkörpers. Die Größenordnung stimmte mit der des eruptierten Materials überein, sodass man davon ausgehen kann, dass die Paroxysmen aus dem mittleren Magenkörper gespeist wurden.

Nach Beendigung des Eruptionszyklus und der damit einhergehenden Entladung des Magmenkörpers begann die Schwerkraft zwischen 2014 und 2016 wieder zu steigen. Eine Bodenhebung konnte erst im Jahr 2016 festgestellt werden. Sie hielt bis zum Ende des Beobachtungszeitraums im Jahr 2018 an. An den meisten Messstationen hob sich der Boden um ca. 2 cm. Paroxysmen blieben aber erst einmal aus, sodass die Forscher vermuteten, dass es nur zu Paroxysmen kommt, wenn ein Anstieg der Gravitation mit der Bodenhebung gekoppelt ist. Im Jahr 2019 kam es dann zu Aktivität in der Bocca Nuova. Wie wir heute wissen, folgten in den Jahren 2020 und 2021 neue Paroxysmen. Aktuell befindet sich der Ätna wieder in einer Hebungsphase und es wird ein Lavastrom gefördert, der sehr wahrscheinlich aus dem oberen Magmenreservoir gespeist wird.

(Quelle: Springer und INGVulcani. Autoren der Studie: Filippo Greco, Alessandro Bonforte, Daniele Carbone)

Studie zeigt Magmen-Transportwege unter Hawaii

Neue Studie identifiziert seismische Mantelschwellen als Knotenpunkte des Magmentransports unter Hawaii

Die Vulkane auf Hawaii zählen zu den am besten erforschten Feuerbergen der Welt. Dennoch sind ihre Geheimnisse noch nicht komplett entschlüsselt. Geowissenschaftler versuchen immer noch zu verstehen, wie der Magmentransport in größeren Tiefen funktioniert. Die beiden aktiven Vulkane Mauna Loa und Kilauea scheinen über ein gemeinsames Magmen-Transportsystem zu verfügen, was auch nicht weiter verwundert, werden sie doch von einem gemeinsamen Hotspot gespeist, der für die Entstehung aller Inseln Hawaiis verantwortlich ist. Der gängigen Theorie nach wandert die Ozeankruste über diese ortsstabile Mantelplume hinweg, wodurch eine vulkanische Inselkette entsteht. Aktiv sind immer nur die jüngsten Vulkane dieser Kette. Im Fall von Hawaii sind 3 Vulkane aktiv: Mauna Loa, Kilauea und der Kama’ehuakanaloa (früher Loihi) Seamount. Jetzt ist es Forschern gelungen, einem unterirdischen Magmen-Speicher- und Transportsystem ein Stück weit auf die Schliche zu kommen. Dabei half die Analyse eines ungewöhnlich intensiven Schwarmbebens, dass hier auf vulkane.net öfters im Fokus der Berichterstattung stand: die Rede ist von den Beben bei Pāhala, einem Küstenort auf der unteren Südflanke des Vulkans Kilauea.

Seit dem Ende der Leilani-Eruption im Jahr 2018, bei der es sich um die größte Eruption auf Hawaii seit 200 Jahren gehandelt hatte und es zum Kollaps der Gipfelcaldera kam, manifestierten sich in der Nähe von Pāhala fast 200.000 schwache Erdbeben. Diese Erdbeben analysierten die Forscher mit Hilfe von Deep-Learning-Algorithmen und konstruierten Computermodelle des Untergrunds. Bei den Erdbeben handelte es sich überwiegend um vulkanotektonische Erschütterungen und um langperiodische Erdbeben, die sich in Tiefen zwischen 36 und 51 km abspielten und damit bereits in einem Teil der Asthenosphäre lagen, der von den Wissenschaftlern der Studie dem oberen Erdmantel zugeordnet wurde. Tatsächlich soll die aktive Mantelplume des Hotspots bei Pāhala liegen.

Mithilfe der Erdbeben konnten die Wissenschaftler 2 seismische Hauptkörper unterscheiden. Der obere Komplex liegt in einer Tiefe von 36-43 km und wird überwiegend durch vulkanotektonische Erdbeben definiert. Der zweite Körper erstreckt sich in einer Tiefe von 45-51 km. In ihm finden hauptsächlich die langperiodischen Beben statt. Dort gibt es auch Tremorquellen, von denen man annimmt, dass sie von Magmenbewegungen im Mantelplume stammen. Im oberen Körper identifizierten die Forscher anhand der Erdbeben horizontale Platten, die jeweils von 500 m dicken Zonen getrennt sind, in denen es weniger Erdbeben gab. Einzelne Platten messen bis zu 6 km mal 5 km und haben eine Mächtigkeit von bis zu 300 m. Die Platten fallen in einem Winkel von 25 Grad nach Westen ein. Sie sind nicht alle wie Pfannekuchen übereinander gestapelt, sondern sind seitlich ein wenig versetzt, sodass sie sich über eine Fläche von 17 km erstrecken. Die Forscher bezeichnen diese Struktur als Mantelschwellen bzw. als Pāhala-Sill-Komplex. Die Ergebnisse der Studie deuten darauf hin, dass dieser Mantelschwellenkomplex ein Knotenpunkt für den Magmatransport unter Hawaii ist und deuten außerdem auf eine weit verbreitete magmatische Konnektivität im Vulkansystem hin. Vom Pāhala-Sill-Komplex ausgehend konnten die Forscher weitere seismische Zonen verfolgen, entlang derer sich die Magmen zu den einzelnen Vulkanen verteilen. Das Prominenteste ist das 25 km lange Pāhala-Mauna Loa-Seismizitätsband, entlang dem ein unterirdischer Magmenstrom bis in einer Tiefe von 10 km verfolgt werden konnte, der ca. 20 km südlich des Mauna Loa-Gipfels in einen Magmenkörper mündet.

(Quelle: Science. Autoren der Studie: JOHN D. WILDING, WEIQIANG ZHU, ZACHARY E. ROSS, JENNIFER M. JACKSON)