Yellowstone: wie schnell kann der Supervulkan erwachen?

Einer der größten Vulkane der Welt schlummert unter der landschaftlichen Idylle des Yellowstone Nationalparks in den USA. Die Caldera des Supervulkans entdeckte man erst vor wenigen Jahrzehnten auf Satellitenfotos: so gewaltig ist der Einsturzkessel, dass Wissenschaftler lange Zeit den Vulkan vergeblich suchten, obwohl sie mitten drin standen. Vulkanische Gesteine zeugen nicht nur von den 3 Supervulkaneruptionen des Vulkans, die sich in den letzten 2,1 Millionen Jahren ereigneten, sondern auch von zahlreichen normal großen Ausbrüchen. Seit der letzten Supervulkaneruption von 640.000 Jahren sind den Vulkanologen 23 normal große Vulkanausbrüche bekannt. Der Letzte dieser Ausbrüche fand vor gut 70.000 Jahren statt und viele Forscher fragen sich, wie lange der Nächste noch auf sich warten lässt.

Heiße Quellen und Geysir als Spuren des Vulkanismus im Yellowstone Nationalpark. © Marc Szeglat
Heiße Quellen und Geysir als Spuren des Vulkanismus im Yellowstone. © Marc Szeglat

Anzeichen für ein mögliches Erwachen des Vulkans werden schon seit längerem immer wieder beobachtet. So bildete sich im Bereich des Yellowstone-Sees eine Bodenaufwölbung, im Norris Geyser Basin entstanden neue Fumarolen und immer wieder kam es zu leichten Schwarmbeben. Eine Frage die sich in diesem Zusammenhang stellt ist die, wie viel Zeit zwischen den ersten Anzeichen des Erwachens bis zum Ausbruch vergeht.
Petrologin Christy Till von der „School of Earth and Space Exploration“ kann diese Frage möglicher Weise beantworten. Die Professorin sammelte Lavaproben im Yellowstone und untersuchte die Kristalle der Lava im Labor. Sie identifizierte die Wachstumszonen der Kristalle, die Ähnlichkeiten mit den Jahresringen von Bäumen haben und rekonstruierte ihre Geschichte mit Hilfe des NanoSIMS (Nano Sekundärerionen-Massenspektrometer). Bei ihren Forschungen konzentrierte sich die Petrologin auf die Frage, wie lange es dauert bis das bereits erstarrte Magma in der Magmakammer schmilzt und eruptiert wird, wenn sich die Kammer nach einer langen Ruheperiode des Vulkans erneut aufheizt. Dabei fand sie heraus, dass bei der letzten Eruption die in der Magmakammer wieder aufgeschmolzenen Kristalle innerhalb von 10 Monaten nach der beginnenden Aufheizung eruptiert wurden. Dieses Ergebnis überraschte zahlreich Forscher, nahm man bisher doch an, dass dieser Prozess deutlich mehr Zeit benötigen würde.

Falschfarbenbild zonierter Pyroxen-Kristalle. Die konzentrischen Schichten entstanden durch erneutes Wachstum der Kristalle als frisches Magma in die  Magmakammer strömte. © Kate Saunders, University of Bristol/spektrum.de

Diese Ergebnisse lassen sich sicherlich nicht 1:1 auf jeden Ausbruch des Yellowstone-Vulkans übertragen, liefern aber doch einen Anhaltspunkt über die zeitliche Dimensionen und der Vorwarnzeit die bleibt um zu reagieren. Nur muss man sich nun die Frage stellen, ab wann die Uhr tickt? Anzeichen, dass sich unter dem Yellowstone-Vulkan neues Magma ansammelt, welches die Magmakammer aufheizt gibt es ja immer wieder.

Quelle: Arizona State University.

Yellowstone Caldera: neue Forschungsergebnisse zur Magmakammer

Computermodelle der Magmakammer unter dem Yellowstone-Vulkan. &copy: Farrell u.a.Eine Forschergruppe um Jamie Farrell wertete seismische Daten aus, die zwischen 1984 und 2011 in der Yellowstone-Caldera gesammelt wurden. Diese Daten wurden herangezogen, um mittels Computer ein tomographisches Bild der Magmakammer unter dem Yellowstone zu erstellen. Dies gelingt, da sich Erdbebenwellen in verschiedenen Medien unterschiedlich schnell ausbreiten. In Zonen mit geringerer Dichte breiten sich die Erdbebenwellen langsamer aus, als in Bereichen mit hoher Dichte. Durch minimale Laufzeitunterschiede können die Forscher verschiedene Gesteinsarten detektieren und insbesondere Fluide und Gesteinsschmelzen lokalisieren. Untersuchungen dieser Art wurden in den letzten Jahren häufiger durchgeführt, doch meistens ging es bei diesen Arbeiten um die Tomografie des Mantelplume und nicht um die oberflächennahe Magmakammer. Farrell und seine Kollegen werteten besonders viele seismische Daten aus und konnten so bestehende Modelle erweitern und verfeinern. Sie kamen zu dem Ergebnis, dass die Magmakammer unter dem Yellowstone-Vulkan noch größer ist, als bisher angenommen. Besonders auffällig ist eine Zone mit geringer Ausbreitungsgeschwindigkeit der Erdbebenwellen an der Nordost-Grenze der Caldera. Diese liegt nahe der Oberfläche und scheint mit Fluiden gefüllt zu sein. Bei diesen Fluiden kann es sich um Magma, oder (und) hydrothermalen Lösungen handeln. Die Forscher geben die Maße der Magmakammer so an: 90 km lang, zwischen 5 und 17 km tief, Insgesamt 2,5 fach größer als bisher angenommen. Der Magmakörper erstreckt sich 15 km des nordöstlichen Calderarandes.

Die Verlagerung der Magmakammer in Richtung Nordosten hängt mit der Plattentektonik zusammen. Während der Mantelplume unter Yellowstone ortskonstant ist, wandert die Platte über ihn hinweg und das Eruptionszentrum verlagert sich an der Oberfläche.
Das Volumen der Magmakammer schätzen die Forscher auf 200 – 600 Kubikkilometer. Von den Gesteinen der Magmakammer sollen ca. 5-15% geschmolzen sein. Bisher ging man davon aus, dass die Magmakammer weniger Material enthalte, das aber ca. 32% geschmolzen sei. Einigen Studien zufolge müssen ca. 40% Schmelze in der Magmakammer vorhanden sein, bevor es zu einem Vulkanausbruch kommen kann. Es gibt aber auch Schätzungen, nachdem dafür weitaus weniger Schmelze ausreichend ist.

Damit ein Magmakörper aus größeren Tiefen aufsteigen kann sind ca. 5% Schmelze nötig. Das restliche Magma ist aufgrund der Hitze plastisch. Damit dieses Material in der Magmakammer schmelzen kann sind Temperaturen von mehr als 700 Grad nötig. Studien von anderen Vulkanen zeigen, dass das Magma in der Magmakammer nur während 1% seiner Verweildauer in der Kammer zum größten Teil geschmolzen ist. Die Zeitspanne, während der es überhaupt zur einem Vulkanausbruch kommen kann, ist somit relativ kurz.

Allerdings haben erst kürzlich Forschungen an der ETH Zürich gezeigt, dass weder der Schmelzanteil, noch der Gasdruck alles bestimmende Größen sind, ob und wann ein „Supervulkan“ eruptiert. Die Wissenschaftler um Carmen Sanchez-Valle machten Laborexperimente mit Lava aus „Supervulkan-Eruptionen“. Sie kamen zu dem Schluss, dass allein schon der Dichteunterschied eines großen Magmakörpers zum Umgebungsgestein ausreichen kann, um eine Eruption auszulösen. Die Wissenschaftler vergleichen den Magmakörper mit einem Fußball, den man unter Wasser drückt und loslässt. Im Wortlaut erklärt das Sanchez-Valle so: „Die Ergebnisse zeigen, dass bei einer ausreichenden Größe der Magmakammer alleine der durch Dichteunterschiede verursachte Überdruck genügt, um die darüber liegende Kruste zu durchbrechen und eine Eruption in Gang zu setzen“. Wieviel Magma in der Kammer geschmolzen sein muss, erklären die Forscher aber nicht.

Eine aktuelle Meldung des USGS sorgt für weiteren Diskussionsstoff: demnach änderte sich die Richtung der Bodendeformation im Norden der Yellowstone-Caldera. Nach einem mittelstarken Erdbeben der Magnitude 4,8 verschob sich die Bodendeformation um 0,5 cm in westlicher Richtung und um 1 cm Richtung Norden. Zuvor verschob sich der Untergrund in südlicher Richtung. Der Trend zur Inflation schlug in Deflation um: der Boden sackte um 2 cm ein, womit er gut ein Drittel der Aufwölbung verlor, die sich in den letzten 8 Monaten gebildet hatte. Die seismische Tätigkeit war recht hoch und konzentrierte sich auf einem Gebiet in der Nähe des Norris Geyser Basins.

Aus den neuen Forschungsergebnissen und Beobachtungen kann man ableiten, dass sich Magma im Untergrund des Yellowstone Nationalparks bewegt. Einen Vulkanausbruch mit globalen Folgen halte ich in mittelbarer Zukunft für sehr unwahrscheinlich. Es könnten sich aber durchaus lokale Magma-Ansammlungen mit genug Schmelze bilden, die einen normalen Vulkanausbruch verursachen könnten.

Weiterführende Links:

Steckbrief Yellowstone

Bildergalerie Yellowstone

Quellen: USGS, Wired Eruptions, nature.com, Geophysical Research Letters:
„Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera.“

Yellowstone: Tremor ebenfalls erhöht!

Update: Erik Klemetti schreibt auf wired science über den Yellowstone. Er hat mit Vulkanologen von dort kommuniziert. Diese meinten, dass der erhöhte Tremor wahrscheinlich auf stürmisches Wetter zurückzuführen sei. Einige der Seismographen würden zudem alt sein und an exponierten Stellen stehen, sodass es zu Fehlfunktionen kommen kann.

Ein vulkane.net Leser machte mich auf erhöhten Tremor in der Yellowstone Caldera aufmerksam. Weiß jemand etwas darüber? Ich werde das morgen genauer recherchieren.

Mantelplume unter Yellowstone größer als gedacht

Der ohnehin gigantische Mantelplume unter dem Yellowstone-Vulkan ist vermutlich deutlich größer als gedacht. Das zeigen neue Untersuchungen die Michael Zhadanov und sein Team von der Universität in Salt Lake City durchgeführt haben. Dazu wandten sie eine neue Untersuchungsmethode an die Magnetotellurik genannt wird. Hierbei werden, ähnlich wie bei seismischen Messungen, Laufzeitunterschiede von Wellen benutzt, die sich in unterschiedlich dichtem Material verschieden schnell bewegen. Nur anstatt von Erdbebenwellen, werden bei der Magnetotellurik ultraniedrigfrequente Elektromagnetische Wellen beobachtet, die in der Ionosphäre entstehen und bis in den Erdmantel eindringen.

Bisher wurde angenommen, dass sich der Mantelplume unter dem Yellowstone ca. 241 km in westnordwestlicher Richtung ausbreitet und dabei mit einem Winkel von ca. 60 Grad ins Erdinnere abtaucht. Die neuen Untersuchungen haben eine Ausdehnung von 643 km ergeben und einen seichteren Abtauchwinkel von ca. 40 Grad. Der Plume soll dabei die Form eines Tornados haben. Das sich verjüngende Ende konnte bis in einer Tiefe von ca. 660 km verfolgt werden. Möglicherweise reicht er noch tiefer in den Erdmantel hinab, aber die Elektromagnetischen Wellen können nur bis in diese Tiefe vordringen.

Ein weiteres Forschungsergebnis von Zhadanov ist die Beobachtung, dass sich um den eigentlichen Mantelplume Zonen befinden, die mit Schmelze und Salzwasser (bzw. Fluide) gefüllt sein sollen, während das Gestein im eigentlichen Mantelplume zwar heiß, aber nicht geschmolzen ist. Dass Wasser den Schmelzpunkt von Gestein herabsetzt und es dadurch zum partiellen Schmelzen kommen kann, ist in der Vulkanologie schon lange bekannt und experimentell  nachgewiesen. Partielles Schmelzen wird als einer der Hauptgründe genannt, warum Magma auch in Zonen (Grenzbereich Erdkruste – Erdmantel) entstehen kann, in denen es aufgrund zu niedriger Temperaturen eigentlich nicht zur Entstehung von Schmelzen kommen sollte. Die Frage stellt sich, woher das Salzwasser kommt? Normaler Weise ist das ein Phänomen entlang von Subduktionszonen, an denen Ozeanische Kruste in den Erdmantel abtaucht und dabei wasserhaltige Sedimente mit in die Tiefe des Erdmantels schleppt. Wie bereits in einem meiner letzten Artikel über den Yellowstone-Mantelplume beschrieben, schneidet die Subduktionszone vor der Westküste der USA den Yellowstone-Mantelplume und interagiert mit diesem. Möglicherweise stammt das Salzwasser von dieser Quelle. Theoretisch kann es sich aber auch im Erdmantel gebildet haben und aus der Schmelze stammen. Wasser kann entweder direkt als H2O Molekül, oder als OH-Gruppe in den Kristallgittern der Mineralien eingebaut sein und durch Schmelzprozesse freigesetzt werden. Entgegen vieler älterer Lehrbücher geht man heute davon aus, dass die silikatische Gesteine des Erdmantels aufgrund der hohen Druckbedingungen im Erdmantel nicht geschmolzen sind, sondern sich plastisch wie Knetgummi verhalten und nur unter bestimmten Bedingungen schmelzen.

Einen Mantelplume kann man sich in etwa wie ein Schlauch vorstellen, aus dem Magma aus dem Erdmantel aufsteigt und bis in die Erdkruste eindringt. Am Ende des Mantelplumes sitzt eine Magmakammer auf, die den Yellowstone Vulkane mit Schmelze versorgt.

Tickt unter dem Yellowstone eine vulkanische Zeitbombe?

Tickt unter dem Yellowstone eine vulkanische Zeitbombe?

Jüngste Medienberichte schüren Panik, dass unter der Yellowstone-Caldera eine vulkanische Zeitbombe ticken würde. Grund für die neuerliche Hysterie sind ein Artikel in National Geografic und ein Interview auf CNN mit dem Physiker Michio Kaku. In dem Artikel heißt es, dass sich der Boden der Caldera seit dem Jahr 2004 teilweise um 25 cm angehoben hätte. Dass entspricht eine jährliche Hebungsrate von ca. 7 cm. Tatsächlich ist der Trend seit 2007 stark rückläufig. In den letzten 3 Jahren hob sich der Boden nur noch um 1 cm pro Jahr.

Michio Kaku sprach in seinem Interview von einem kurz bevorstehenden Vulkanausbruch, der die halbe USA verwüsten würde.

Fakt ist, das sich der Boden tatsächlich angehoben hat, das die Magmakammer, die für diese Anhebung verantwortlich ist, aber in 10 km Tiefe liegt. Seriöse Geowissenschaftler geben somit vorerst Entwarnung und halten einen baldigen Ausbruch des Yellowstone-Vulkans für unwahrscheinlich. Erst wenn das Magma auf einer Tiefe von 2 – 3 km angestiegen sei, würde eine unmittelbare Gefahr bestehen.

An vielen Vulkanen und Calderen kommt es zur Magmen-Intrusion im Untergrund, ohne das tatsächlich ein Vulkanausbruch stattfindet. Beispiele hierfür sind das Cheb Becken in Böhmen und die Long Valley Caldera in den USA. Dort ereignete sich im Mai 1980 ein initialer Erdbebenschwarm und eine Anhebung (uplift) des Calderabodens um ebenfalls 25 cm begann. Zeitgleich erhöhte sich die Temperatur in hydrothermalen Quellen. Seitdem ereigneten sich mehrere uplift-Zyklen, ohne das es zu einem Ausbruch gekommen wäre. Die letzte Eruption ereignete sich in der Long Valley Caldera vor 250 Jahren. Damals kam es auch nicht zu einem katastrophalen Ausbruch, sondern zu einem vergleichsweise schwachen Ereignis.

Auch im Yellowstone Park gab es seit der letzten Supervulkan-Eruption vor 640.000 Jahren weitere Vulkanausbrüche während des Pleistozäns. Diese spielten sich aber innerhalb der Caldera statt. So wurden im Zeitraum zwischen 140.000 und 70.000 Jahren große Mengen rhyolihtischer Lavaströme gefördert. Im Holozän gab es phreatomagmatische Explosionen. Es ist also nicht gesagt, dass eine Eruption im Yellowstone Nationalpark katastrophale Folgen haben muss, sofern es dann überhaupt in mittelbarer Zeit zu einem Ausbruch kommen sollte.

Neues Modell des Yellowstone Mantelplume

 

Yellowstone Mantelplume
Yellowstone Mantelplume

Forscher der Universität von Kalifornien entwickelten mit Hilfe der seismischen Tomografie ein neues Computermodell des Mantelplume unter dem Yellowstone Vulkan. Das Forscherteam um Mathias Obrebski wertete dafür die Signale von unzähligen Seismometern aus, die in den letzten Jahren im Westen der USA installiert wurden. Bei der seismischen Tomografie wird der Umstand zunutze gemacht, dass sich Erdbebenwellen in verschiedenen Medien unterschiedlich schnell ausbreiten. Lokale Unterschiede im Gestein der Erdkruste verursachen so eine Differenz zwischen tatsächlicher und erwarteter Laufzeit von Erdbebenwellen. Da heiße Gesteine eine geringere Dichte haben, als kälteres Gestein ändert sich auch hier die Laufzeit der Erdbebenwellen. Im heißen Gestein verringert sich die Fortpflanzungsgeschwindigkeit der Erdbebenwellen und es entsteht eine sogenannte „low-velocity-zone“. Umgekehrt nimmt die Geschwindigkeit der Erdbebenwellen in kälterem Gestein zu und es entsteht eine „high-velocity-zone“.
Mit diesen Laufzeitunterschieden und einem dichten Netzwerk von Seismometern wurden nun zahlreiche Erdbebenwellen aus unterschiedlichen Richtungen detektiert werden und Obrebski berechnete ein dreidimensionales Bild des Mantelplumes unter dem Yellowstone. Darüber hinaus wurde auch eine Interaktion zwischen der Subduktionszone vor der Westküste der USA und dem Mantelplume feststellen. Dieser durchstieß die in den Erdmantel abtauchende Juan de Fuca Platte und fragmentierte diese. Einige der Plattenfragmente wurden durch den aufsteigenden Mantelplume abgelenkt. Das Model zeigt sogar eine große Lücke in der subduzierten Platte unter Oregon.
Die Interaktion zwischen Mantelplume und subduzierte Platte könnte einige besondere geophysikalische Effekte der Cascaden-Subduktionszone erklären, die den Wissenschaftlern bisher Rätsel aufgaben. Zudem erklärt sie die verdrehte Struktur des Mantelplumes, die ein wenig an den Windungen eines Korkenziehers erinnert.
Eine weitere –und bisher von den Wissenschaftlern nicht diskutierte Möglichkeit- wäre die chemische Interaktion zwischen der basaltischen Schmelze eines Mantelplumes und Magma das durch partielles Schmelzen subduzierter ozeanischer Kruste entsteht. Letztere ist reich an Wasser und Kieselsäure und wird von Vulkanen explosiv gefördert, während die basaltische Schmelze eines Mantelplumes überwiegend geringexplosiv gefördert wird. Die hochexplosiven Phasen des Yellowstone-Vulkans förderten große Mengen ryholithische Lava, die im Verhältnis 1:10 aus einem basaltischen Magma hervorgehen kann, indem dieses über lange Zeiträume in der Magmakammer umgewandelt wird. Eventuell wurde dieser Prozess durch die Interaktion der subduzierten Platte mit dem Mantelplume verstärkt.
Eine weiter Hypothese ist, das besagte Interaktion zum Ausbruch der Columbia River Basalte führte.