Ätna: Steigender Tremor und gelber Alarm

Steigender Tremor am Ätna deutet vulkanische Aktivität an – Alarmstufe Gelb für den Flugverkehr

Am Ätna auf Sizilien steigt der Tremor seit dem Nachmittag an, was darauf hindeutet, dass sich wieder strombolianische Eruptionen am Südostkrater aufbauen könnten. Der Gipfel hüllt sich allerdings (noch) in Wolken, daher gibt es keine visuellen Beobachtungen des Geschehens. Ascheneiderschlag wurde noch nicht gemeldet, doch vorsorglich hat das INGV die Flugverkehrs-Alarmstufe „Gelb“ ausgerufen. Prognosemodelle zeigen, dass sich eine potenzielle Aschewolke in Richtung Osten ausbreiten würde. Stay tuned!

Update: Die Anfänglich keinen strombolianischen Eruptionen steigerten sich im Laufe des Abends weiter, so dass die Ausbrüche so schnell hintereinander kamen, dass man sie defacto als kleine Lavafontäne bezeichnen konnte.

Das Nationalen Instituts für Geophysik und Vulkanologie (INGV), bestätigte die Tätigkeit in einem Sonderbulletin, dass um 21:54 UTC veröffentlicht wurde. Danach kam es zu heftigen und häufigen Explosionen am Südostkrater. Darüber hinaus bildeten sich zwei kleinere Lavaströme, die sich in südliche und östliche Richtung ausbreitete. Eine Eruptionswolke zog ost-südöstlich über das Gebiet hinweg – in einigen Ortschaften unter der Aschwolke kam es zu Ascheregen.

Auch aus seismologischer Sicht wurde die Lage als dynamisch bezeichnet: Die Amplitude des vulkanischen Tremors erreichte ihren Höchststand gegen 20:10 Uhr UTC und bewegte sich auf hohem Niveau. Das Zentrum der Tremorquellen befand sich unterhalb des Südostkraters, in etwa 2900 Metern Höhe.

Neben der seismischen Aktivität wurde auch eine deutliche Infraschallaktivität registriert – mit zahlreichen, energiereichen Signalen, die ebenfalls dem Südostkrater zugeordnet wurden.

Messungen der Bodenverformung zeigten keine größeren Veränderungen. Dennoch wurde am Dilatometer der Station DRUV eine moderate Spannungsänderung von rund 24 Nanostrain festgestellt – ein Anzeichen dafür, dass das vulkanische System unter Druck stand.

Es waren auch wieder Fotografen am Vulkan unterwegs, die ihre Fotos in unserer FB-Gruppe „volcanoes and volcanism“ geteilt haben.

Vulkanbögen und Backarcs: Neues Entstehungsmodell entwickelt

Was passiert in Backarcs hinter Vulkanbögen? Ein neues Modell bringt Licht ins geologische Dunkel

Wer sich schon einmal gefragt hat, warum die Landschaften hinter Vulkanbögen so unterschiedlich aussehen fand bisher keine einfache Antwort. In den sogenannten Backarc-Regionen können sich Gebirge auftürmen, oder Becken absenken, während wiederum andere Region tektonisch ruhig bleiben und keine morphologischen Auffälligkeiten zeigen, obwohl sie sich alle in der Nähe aktiver Vulkanketten befinden. Was all diese Backarc-Regionen verbindet, ist jedoch eine auffällige Gemeinsamkeit: Sie weisen oft einen besonders hohen Wärmefluss und eine ungewöhnlich dünne Lithosphäre auf – und das oft weit entfernt vom Vulkanbogen selbst. Woher kommen diese Anomalien?

Diese Frage beschäftigt Geowissenschaftlerinnen und Geowissenschaftler seit Jahrzehnten. Bisher entwickelte man komplexe Modelle wie Mantelkonvektionen, die die Lithosphäre ausdünnen und Störungssysteme, die bis in den Erdmantel hinab reichen. Ein neues geophysikalisches Modell liefert nun eine überraschend einfache Erklärung und bringt frischen Wind in eine alte Debatte.

Vulkanbögen entstehen dort, wo ozeanische Erdplatten unter Kontinente abtauchen, oder wo sich eine Ozeanplatte unter eine andere schiebt – ein Prozess der uns als Subduktion bekannt ist. Dabei schmilzt ein Teil des abtauchenden Gesteins, Magma steigt auf, und hinter der Subduktionszone entstehen Vulkane, wie man sie zum Beispiel in Japan oder entlang der Anden findet. Doch die geologischen Verhältnisse hinter diesen Vulkanbögen – in den Backarc-Zonen – könnten unterschiedlicher kaum sein: In der Ägäis etwa wird die Erdkruste gedehnt, in Zentralasien hingegen türmen sich riesige Gebirgsketten auf, und in Japan bleibt die Region vergleichsweise stabil.

Das Puzzel der Terrane

Ein Forscherteam um den Geophysiker Zoltán Erdős (GFZ Potsdam) und Ritske Huismans (Universität Bergen) hat mithilfe von Computermodellen untersucht, wie sogenannte Terrane – kleine Krustenfragmente, die mit der ozeanischen Platte transportiert werden – mit einem Kontinent kollidieren und sich dort anlagern. Diese „Krusten-Puzzleteile“ können den Aufbau der Erdkruste tiefgreifend verändern und sich auch auf die Struktur des Erdmantels auswirken. Das Modell zeigt, dass durch solche Terran-Akkretion genau jene geophysikalischen Auffälligkeiten entstehen, die bisher schwer zu erklären waren – ganz ohne auf komplexe Mantelströmungen zurückgreifen zu müssen.

Beispiele für solche Regionen sind die nordamerikanischen Kordilleren, Zentralanatolien, die Ägäis oder Neuguinea. In all diesen Gebieten haben in der Vergangenheit Terrane mit dem jeweiligen Kontinent verschmolzen – und das spiegelt sich bis heute in ihrer geologischen Struktur wider.

Die neue Studie liefert nicht nur einen wichtigen Beitrag zur geodynamischen Forschung, sondern hat auch praktische Bedeutung: für die Erkundung von Erdwärme, den Abbau natürlicher Ressourcen und die Einschätzung von Erdbebenrisiken. Denn wer versteht, was unter der Oberfläche passiert, kann besser auf das reagieren, was darüber geschieht. (Quelle: Pressemeldung GFZ, https://www.science.org/doi/10.1126/sciadv.adq8444)

Kanlaon: Warnung vor stärkerer Eruption

Seismische Unruhen am Kanlaon-Vulkan – Warnung vor möglichem Ausbruch

Auf der philippinischen Insel Negros sorgt der aktive Vulkan Kanlaon erneut für Besorgnis: Das Philippinische Institut für Vulkanologie und Seismologie (PHIVOLCS) hat nach einem deutlichen Anstieg seismischer Aktivität eine Warnung herausgegeben. Der seit Wochen unruhige Stratovulkan zeigt zunehmende Anzeichen magmatischer Bewegung im Untergrund. Die Bevölkerung in der Umgebung wurde zur Wachsamkeit und Vorbereitung auf mögliche Evakuierungen aufgerufen.

Allein in den zwölf Stunden zwischen Mitternacht und Mittag des heutigen Tages registrierten die Messstationen 72 vulkanische Erdbeben mit Magnituden zwischen 0,3 und 3,1, wobei letzterer Erdstoß für ein vulkanotektonisches Beben ungewöhnlich heftig war. Die Beben ereigneten sich in Tiefen von bis zu acht Kilometern unter den Nord- und Nordwestflanken des Vulkans. Seit dem 11. Mai summiert sich die Zahl der Erdbeben auf 135 Ereignisse, darunter mehrere vulkanisch-tektonische Beben, die auf Gesteinsbrüche tief im Vulkanschlot hindeuten – ein typisches Anzeichen dafür, dass sich Magma seinen Weg nach oben bahnt.

„Der deutliche Anstieg der vulkanotektonischen Aktivität weist auf fortschreitende Gesteinsbrüche hin“, erklärte PHIVOLCS. „Diese werden durch aufsteigendes Magma oder magmatische Gase verursacht, die Druck auf das umliegende Gestein ausüben.“

Auch die Gasemissionen liefern Hinweise auf Veränderungen im inneren System des Vulkans. Messungen vom 11. Mai ergaben einen Ausstoß von durchschnittlich 554 Tonnen Schwefeldioxid (SO₂) pro Tag – ein Wert, der im Vergleich zu früheren Messkampagnen deutlich gesunken ist. So lagen die Emissionen am 3. Juni 2024 noch bei 4.144 Tonnen täglich, am 9. Mai 2025 bei durchschnittlich 2.661 Tonnen. Der Rückgang der Emissionen könnte auf eine Blockierung des Fördersystems hinweisen. Durch den Druckanstieg im System könnte es zu einer starken Explosion kommen, die den Förderkanal freibläst. Solche Schloträume fördern meistens viel Asche und verteilen große Lavablöcke in mehreren Kilometern Umkreis. Außerdem könnten pyroklastische Ströme generiert werden – ein sehr gefährliches Szenario.

Derzeit gilt für den über 2.435 Meter hohen Kanlaon, einen der aktivsten Vulkane der Philippinen, weiterhin Alarmstufe 3. Diese deutet auf „magmatische Unruhe“ hin und signalisiert eine erhöhte Wahrscheinlichkeit kurzfristiger, explosionsartiger Ausbrüche, die auch umliegende Siedlungen bedrohen könnten.

PHIVOLCS empfiehlt dringend, das sechs Kilometer breite Sperrgebiet um den Gipfel strikt zu meiden. In diesem Radius besteht akute Gefahr durch pyroklastische Ströme, Ascheregen, Steinschläge und ballistische Auswürfe. Lokale Behörden wurden angewiesen, Vorbereitungen für Evakuierungen zu treffen.

Die letzten Ascheemissionen gab es am 10. Mai. Sie förderten Vulkanasche bis auf 4300 m Höhe.

Auch der Bulusan zeigt heute eine ungewöhnlich hohe Seismizität. Später mehr dazu.

Kreta: Erdbeben M 4,4 westlich der Insel

Erdbeben Mb 4,4 westlich von Kreta – Bodensenkungen detektiert

Datum: 12.05.2025 | Zeit: 02:17:43 UTC | Koordinaten: 35.124 ; 22.478 | Tiefe: 6 km | Mb 4,4

Im Mittelmeer, westlich der griechischen Insel Kreta, ereignete sich vergangene Nacht um 02:17:43 UTC ein Seebeben der Magnitude Mb 4,4. Das Hypozentrum lag in nur sechs Kilometern Tiefe. Das Epizentrum wurde 114 Kilometer west-südwestlich von Kíssamos lokalisiert. Wahrnehmungsberichte liegen nicht vor, und das Beben blieb ohne erkennbare Folgen.

In den letzten 24 Stunden wurden zudem vor der Südküste Kretas drei weitere Erschütterungen mit Magnituden im Zweierbereich registriert. Diese Beben stehen sehr wahrscheinlich im Zusammenhang mit den Subduktionsprozessen entlang des Hellenischen Bogens, wo die Kontinentalplatten Afrikas und Europas kollidieren. Dabei wird die afrikanische Platte unter die europäische geschoben und im Erdmantel aufgeschmolzen – ein Vorgang, der maßgeblich zur Magmenbildung und somit zum Vulkanismus in der Mittelmeerregion beiträgt.

Bodenverformungen auf Kreta

Im Zusammenhang mit den Erdbeben bei Santorin habe ich mir gestern die Bodendeformationskarten des EGMS angesehen. Dabei stellte ich fest, dass nicht nur auf Santorin Bodenverformungen zu beobachten sind, sondern auch im Zentrum Kretas. Bereits am 1. Mai berichtete ich über Rissbildungen in der Region um die Dörfer Voutes, Koules und Magarikari. Die Risse traten nicht nur in Straßen, sondern auch in Hauswänden auf. Zwar handelt es sich um ein altbekanntes Phänomen, doch im April kam es zu einer Beschleunigung der Vorgänge, begleitet von zahlreichen schwachen Erdbeben, die allerdings nicht in der Shakemap des EMSC aufgeführt sind – vermutlich, weil ihre Magnituden unter 1 lagen.

Es liegt daher nahe, dass die via InSAR detektierten Bodenabsenkungen mit den beschriebenen Phänomenen i, Zentrum von Kreta zusammenhängen. Die Region ist gebirgig, und es erscheint durchaus möglich, dass hier Erdrutsche auftreten könnten.

Die InSAR-Daten zeigen außerdem signifikante Bodenhebungen auf Samos. Offenbar hat sich die gesamte Insel um mehr als zwei Zentimeter angehoben. Ich vermute tektonische Prozesse als Ursache und schätze die Erdbebengefahr auf Samos als hoch ein.

Weiteres Beben auf Santorin

Auch auf Santorin wurde in den vergangenen 24 Stunden erneute Seismizität verzeichnet. Direkt auf der Insel wurde ein Beben der Magnitude Mb 2,0 in nur zwei Kilometern Tiefe registriert. Vier weitere Beben ereigneten sich im Gebiet des Schwarmbebens vom Jahresanfang.

Axial Seamount – Steckbrief

Axial Seamount – Der aktivste Unterwasservulkan im Nordpazifik

Der Axial Seamount ist ein sichelförmiger Unterwasservulkan im Nordostpazifik, rund 480 km westlich der Küste von Oregon in den USA. Er liegt direkt auf dem Juan-de-Fuca-Rücken, einem mittelozeanischen Spreizungszentrum, wo sich die ozeanische Juan-de-Fuca-Platte von der Pazifischen Platte mit einer Geschwindigkeit von etwa 6 cm pro Jahr entfernt. Gleichzeitig befindet sich unter dem Vulkan der sogenannte Cobb-Hotspot: Hierbei handelt es sich um eine schlauchartige Magmaaufstiegszone, die im tief liegenden Erdmantel ihren Ursprung findet und bis zur Erdkruste hinauf reicht. Seit Millionen von Jahren wandert die Ozeankruste über diesen Hotspot hinweg und es bildete sich eine Kette submariner Vulkane, die als Cobb-Eickelberg-Seamount-Kette bekannt ist. Diese einzigartige Überlagerung von Hotspot und mittelozeanischem Rücken macht den Axial Seamount zu einem geologisch besonders komplexen und aktiven System. Obgleich diese Konstellation nicht wirklich einzigartig ist, denn auch auf Island findet sich die Kombination von divergenter Plattengrenze mit einem Hotspot.

Der Vulkan erhebt sich gut 700 Meter über zentralen Juan-de-Fuca-Rücken. Geht man vom Grund des Ozeans am Fuße des Rückens aus, ist der submarine Vulkan ca. 1100 Meter hoch und sein Gipfel liegt rund 1.400 Meter unter dem Meeresspiegel. Im Zentrum befindet sich eine markante, rechteckige Caldera mit einer Größe von 3 mal 8 Kilometer, die vermutlich vor etwa 31.000 Jahren entstand. Diese Struktur ist nach Südosten hin geöffnet und von bis zu 150 Meter hohen Randverwerfungen begrenzt. Zwei große Riftzonen ziehen sich vom Zentralbereich aus etwa 50 Kilometer nach Nordosten und Südwesten. Die Vulkanflanken sind von zahlreichen Spalten, Kratern, Lavaströmen und kleineren Erhebungen durchzogen, darunter mehrere Kuppeln mit Höhen von 100 bis 300 Meter.

Ein besonderes Merkmal des Axial Seamount ist seine hydrothermale Aktivität. Entlang der Riftzonen und in der Caldera treten sogenannte Black Smoker auf. Hierbei handelt es sich um heiße, mineralreiche Quellen, deren Öffnungen an den Spitzen mehrerer Meter hoher schornsteinähnlicher Türme liegen. Die Quellen fördern bis zu 300 Grad heiße Fluide, die reich an gelösten Metallen sind, die bei Kontakt mit Meerwasser Sulfide bilden und ausfallen. Diese Quellen bilden die Grundlage für einzigartige Ökosysteme in der Tiefsee. Trotz völliger Dunkelheit und extremem Druck leben dort dichte Gemeinschaften spezialisierter Organismen wie Röhrenwürmer, Muscheln, Bakterienmatten und Garnelen, die nicht auf Sonnenlicht, sondern auf chemosynthetische Energiequellen angewiesen sind. In vergleichbaren Ökosystemen könnte die Wiege des Lebens auf der Erde liegen.

Petrografisch besteht der Axial Seamount hauptsächlich aus tholeiitischen Basalten, wie sie für ozeanische Rücken typisch sind. Diese enthalten vor allem Plagioklas, Klinopyroxen und Olivin. Kissenlaven sind weit verbreitet, insbesondere entlang der Calderawände. Die Zusammensetzung der Laven weist darauf hin, dass sie aus relativ homogenem, wenig differenziertem Magma stammen – ein Hinweis auf eine vergleichsweise direkte Verbindung zwischen Mantelquelle und Oberfläche.

Die jüngste Eruptionsgeschichte des Axial Seamount ist außergewöhnlich gut dokumentiert. Die Ausbrüche von 1998, 2011 und 2015 konnten dank seismischer Messnetze, Drucksensoren und Tauchrobotern genau überwacht und kartiert werden. Dabei entstanden neue Lavaströme mit Dicken von bis zu 13 m und Breiten von über 1,5 km. Diese Eruptionen begruben mehrfach zuvor installierte Instrumente und bestätigten, dass der Vulkan gegenwärtig das aktivste Eruptionszentrum im gesamten Nordpazifik ist. Frühere Ausbrüche lassen sich durch radiometrische Datierungen bis ins 5. Jahrhundert n. Chr. zurückverfolgen.

Der Axial Seamount ist ein herausragendes Beispiel für die Dynamik ozeanischer Vulkansysteme und bietet durch seine Zugänglichkeit, Aktivität und instrumentelle Überwachung einmalige Einblicke in submarine Vulkangeologie, Tektonik und Tiefseeökologie.

Kilauea auf Hawaii: Ausbruch Nr. 21

Die 21. eruptive Episode am Kilauea fördert hohe Lavafontäne – Pausenintervall dauerte nur 5 Tage

Heute Nacht begann am Kilauea auf Hawaii die 21. eruptive Episode des Ausbruchs, der bereits am 23. Dezember 2024 begann. Die Lavafontänen-Tätigkeit startete gegen 1:45 Uhr UTC durch, auf Hawaii war es erst Sonntagnachmittag 12:45 Uhr Ortszeit. Innerhalb einer halben Stunde baute sich eine über 150 m hohe Lavafontäne auf, die in ihrer Hochphase auch mal 200 m hoch wurde. Da es windig war, wurde die hochschießende Lavafontäne zur Seite gedrückt, so dass eine eindrucksvolle Kaskade entstand. Dort, wo die Schmelze auf den Boden krachte, entstand nicht nur ein Lavastrom, sondern das umliegende Material wurde fragmentiert und wirbelte als braune Aschewolke auf. Die Lava bedeckte schnell einen Teil des Halemaʻumaʻu-Kraters.

Dem Ausbruch gingen knapp fünf Stunden schwächerer Aktivität voraus, geprägt durch Gasaustritte, kuppelförmige Fontänen und unregelmäßige Lavaüberläufe. Mit Beginn der anhaltenden Fontänen zeigte sich ein starker Tremoranstieg und der typische Wechsel der Gipfelneigung von Inflation zu Deflation.

Das Neigungsmessgerät Uēkahuna (UWD) registrierte in der Inflationsphase während der Pause eine Neigungsänderung von sieben Mikroradian. Mit Einsetzen der Lavafontänentätigkeit begann die Hangneigung wieder schnell zu fallen. Schaut man sich das Langzeitdiagramm an, erkennt man, dass trotz des Abbaus der Hebung durch die Eruptionen ein kleines Plus an Hebung übrig bleibt. Im Speichersystem verbleibt immer eine kleine Menge Restschmelze.

Neben Lava setzt der Vulkan auch große Mengen an Gas und Partikeln frei. Die Schwefeldioxid-Emissionen liegen derzeit bei geschätzten 50.000 Tonnen pro Tag. Begleitet wird die Aktivität von der Freisetzung von Tephra und feinen Fasern aus vulkanischen Glas, bekannt als Peles Haar. Die vorherrschenden Nordostwinde treiben diese vulkanischen Produkte südwestlich aus dem Kraterbereich, weg von den Hauptbeobachtungszonen und bewohnten Gebieten.

Die Behörden beobachten die Situation aufmerksam. Der Zugang zum Gipfelbereich ist weiterhin stark eingeschränkt, um Besucher vor möglichen Gefahren durch explosive Aktivität, Gasemissionen und Lavabewegungen zu schützen. Der Zugang zur Besucherterrasse am Overlook ist allerdings frei.

Der Kilauea ist der wohl aktivste Vulkan der Welt und fördert dünnflüssige Lava, die entweder Lavaseen bildet, oder in Fontänen oder Lavaströmen austritt. Dabei ist die Lava so dünnflüssig und heiß, dass sie manchmal bis zum Meer fließt. In der aktuellen Eruptionsphase wechseln sich eruptive Episoden mit Pausen ab – letztere dauern teils weniger als 24 Stunden, teils bis zu 12 Tage, wobei das letzte Pausenintervall nur 5 Tage betrug. Die aktiven Phasen erstrecken sich über Zeiträume von 13 Stunden bis zu acht Tagen.