Island: Erdbeben Mb 4,0 vor Reykjanes

Schwarmbeben vor der Westspitze von Reykjanes mit mehr als 40 Beben – stärkste Erschütterung Mb 4,0

Gestern Abend begann ein starker Erdbebenschwarm vor der Westspitze der Reykjanes-Halbinsel auf Island. Bis heute Morgen wurden mehr als 40 Einzelbeben registriert. Doch nicht die Gesamtzahl der Beben macht diesen Schwarm stark, sondern die Magnitude des stärksten Bebens, das Mb 4,0 erreichte. Darüber hinaus gab es zwei Erschütterungen mit Magnituden im Dreierbereich.
Das Beben Mb 4,0 hatte einen Erdbebenherd in 10 Kilometern Tiefe und wurde 13.6 km südwestlich von Geirfugladrangur bzw. Eldey registriert. In den vergangenen Jahren gab es in dem Bereich des Reykjanes-Ridge zahlreiche Schwarmbeben, die sich überwiegend an der Plattengrenze des mittelozeanischen Rückens manifestieren und tektonischer Natur sind. Allerdings gibt es die Hypothese, dass die Beben durch wachsende Spannungen im Untergrund ausgelöst werden, die ihrerseits vom Magmenaufstieg bei Svartsengi verursacht werden. Sie können somit ein Anzeichen dafür sein, dass sich der Druck im magmatischen Fördersystem einer kritischen Schwelle nähert, ab der Eruptionen wahrscheinlicher werden. Natürlich könnten die Beben auch rein tektonischer Natur sein und nicht vom Magmenaufstieg aus der Tiefe getriggert sein. Eine nennenswerte Bodenhebung gibt es an der Westspitze von Reykjanes nicht.

Ein paar Kilometer weiter östlich sieht das allerdings anders aus, denn bereits bei der Eldvörp-Kraterreihe hebt sich der Boden mit einer Geschwindigkeit von ca. 50 mm pro Monat. Die Bodenhebung bei Svartsengi vollzieht sich doppelt so schnell und beläuft sich momentan auf 100 mm pro Monat und somit auf 3,3 mm pro Tag. Zu Spitzenzeiten wurde die Hebungsrate mit 5 mm pro Tag angegeben. Der Magmastrom aus dem tiefgelegenen Reservoir dürfte aktuell bei ca. 3 Kubikmetern pro Sekunde liegen.  Die Erdbebenaktivität bei Svartsengi ist noch vergleichsweise schwach und es gibt nur sporadische Erschütterungen.

Weiter östlich hält das Schwarmbeben im Krysúvik-System weiter an. Es wird von einer schnell voranschreitenden Subsidenz ausgelöst.

Kamtschatka: Sehr starke Erdbeben Mw 7,4

Sehr starkes Erdbeben Mw 7,4 erschüttert Kamtschatka – Epizentrum nahe Petropavlovsk-Kamchatsky

Datum: 13.09.2025 | Zeit: 02:37:55 UTC | Koordinaten: 53.146 ; 160.167 | Tiefe: 44 km | Mw 7,4

Heute Nacht wurde die russische Halbinsel Kamtschatka erneut von einem sehr starken Erdbeben erschüttert. Es hatte eine Magnitude von 7,4 und ein Hypozentrum in 44 Kilometern Tiefe. Das Epizentrum wurde 103 Kilometer ost-nordöstlich von Petropavlovsk-Kamchatsky lokalisiert. Es wurde Tsunami-Alarm gegeben.

Erdbeben Kamtschatka.. © EMSC

Das Epizentrum lag knapp vor der Küste der Halbinsel Shipunsky und deutlich näher am Land, als es bei den anderen starken Erdbeben der Sequenz der Fall gewesen war, die bereits im Juli begann. Betroffen war derselbe Abschnitt des Kurilen-Kamtschatka-Grabens. Dass das Beben näher an der Küste lag, hängt mit der größeren Herdtiefe zusammen. Dass es erneut zu einem so starken Erdbeben kam, verdeutlicht die enormen Spannungen, die sich entlang der Subduktionszone aufgebaut haben. Entlang des 2250 Kilometer langen Grabens dürfte weiterhin ein großes Erdbebenpotenzial bestehen, was ein ebenfalls hohes Tsunamirisiko bedingt.


Zwar wurde Tsunamialarm gegeben, doch aufgrund des tiefen Hypozentrums war das Risiko gering – ebenso wie die Auswirkungen an der Erdoberfläche. Der Erdstoß war in der Provinzhauptstadt Petropavlovsk-Kamchatsky deutlich zu spüren, und beim EMSC gingen zahlreiche Wahrnehmungsmeldungen ein. Die Zeugen beschrieben das Beben als sehr stark. Möbel und Lampen wackelten, doch „der Karpfen blieb im Aquarium“, hieß es in einer Schilderung. Und wie wir wissen: Solange es dem Karpfen gut geht, gibt es auch keine katastrophalen Schäden an der Infrastruktur.

Überraschenderweise verursachte auch das stärkste Beben der Sequenz, das sich Ende Juli manifestierte und eine Magnitude von 8,8 hatte, nur vergleichsweise kleine Tsunamis und richtete selbst in Petropavlovsk-Kamchatsky nur geringe Schäden an. Der größte Schaden, von dem ich erfuhr, war der Einsturz einer Häuserfront eines Kindergartens. Darüber hinaus gab es Risse in Gebäuden und Straßen sowie kleinere Schäden.

Die Auswirkungen des Megabebens auf die Vulkane Kamtschatkas waren hingegen deutlich. Mehrere bereits eruptierende Vulkane steigerten ihre Aktivität, und der bis dahin ruhende Vulkan Krasheninnikov brach aus. Gestern zeigte der Shiveluch bereits vor dem Beben erhöhte Aktivität.

Übrigens, die Halbinsel Shipunsky trennt die Awatscha-Bucht (Avacha Bay) von der offenen Kronotski-Bucht und gehört zum östlichen Vulkangebiet Kamtschatkas. Ganz in der Nähe befinden sich die Vulkane Avachinsky, Koryaksky und weiter nördlich Zhupanovsky.

Klimawandel beeinflusst bedeutende Meeresströmungen

Extreme Ozeanbedingungen in Panama und Mexiko – Zeichen großer Klimaanomalien

Der Klimawandel zeigt sich derzeit in den tropischen Meeren auf bemerkenswerte Weise: Sowohl im Golf von Panama als auch im Golf von Mexiko wurden in den vergangenen Monaten ungewöhnliche Ozeanphänomene beobachtet.

Im Golf von Panama blieb im Jahr 2025 erstmals seit Jahrzehnten der sonst verlässliche saisonale Auftrieb kalter Tiefenwässer aus. Normalerweise bringen die Nordpassatwinde zwischen Januar und April kühles, nährstoffreiches Tiefenwasser an die Oberfläche. Dieses Wasser unterstützt das Wachstum von Phytoplankton, das am Anfang der Nahrungskette steht und somit die Fischerei fördert. Zudem wirkt das Tiefenwasser als natürliche Kühlung für Korallenriffe, die mit Korallenbleiche und Absterben auf zu hohe Wassertemperatur reagieren. 2025 fiel der Auftrieb jedoch nahezu vollständig aus: Die Meeresoberfläche erwärmte sich länger, die Dauer der Abkühlung war deutlich kürzer, und die Wassertemperaturen erreichten deutlich höhere Minimalwerte. Ursache war offenbar eine verringerte Häufigkeit, Dauer und Intensität der Windstrahlbildung, möglicherweise beeinflusst durch die Position der innertropischen Konvergenzzone (ITCZ) während einer schwachen La-Niña-Phase. Phänomene, die dem Klimawandel geschuldet sind.

Parallel dazu erreichte der Golf von Mexiko 2024/2025 Rekordwerte im Wärmegehalt der oberen Ozeanschichten. Die oberflächennahe Wasserschicht liegt deutlich über dem Durchschnitt, was eine enorme Energiereserve für tropische Stürme oder Hurrikane darstellt. Aktuell verhindern jedoch starke Windscherungen die Bildung solcher Sturmsysteme. Im Herbst oder Winter könnte diese gespeicherte Wärme aber extreme Wetterereignisse im mittleren Süden der USA begünstigen, besonders bei einer möglichen La-Niña-Phase.

Beide Ereignisse haben gemeinsame Ursachen: Großräumige atmosphärische Anomalien, beeinflusst durch ENSO-Phasen (El Niño–Southern Oscillation) und die Position der ITCZ, führen zu veränderten Windmustern. Diese beeinflussen einerseits die Zirkulation im Golf von Panama, wodurch der Auftrieb ausfällt, und andererseits die Wärmeverteilung im Golf von Mexiko, wodurch enorme Energiemengen in der Meeresoberfläche gespeichert werden. In beiden Fällen zeigt sich, wie empfindlich tropische Meere auf Veränderungen der Wind- und Strömungsmuster reagieren.

Die Konsequenzen sind sowohl ökologisch als auch ökonomisch: In Panama drohen Rückgänge bei der Fischerei und erhöhte Hitzebelastung für Korallen, während im Golf von Mexiko die potenzielle Energie für extreme Stürme langfristige Risiken für Menschen und Infrastruktur erhöht. Beide Phänomene verdeutlichen, dass regionale Klimaanomalien weitreichende Auswirkungen haben können und eine intensivere Beobachtung tropischer Meeresräume dringend notwendig ist.

Karangetang: Mindestens ein Dom ist aktiv

Mindestens ein aktiver Lavadom am Doppelgipfelvulkan Karangetang – Seismizität hoch

Der Karangetang auf der Gewürzinsel Siau in Indonesien besticht durch seinen Doppelgipfel, der je von einem Lavadom gekrönt wird. Seit Anfang August nahmen Seismizität und Gasausstoß kontinuierlich zu und Bilder zeigen, dass von beiden Domen Dampf aufsteigt, was man als Indizien für Domwachstum interpretieren kann.

Nun wurde in unserer FB-Gruppe „Volcanoes and Volcanism“ ein Bild gepostet, auf dem nachts rot illuminierte Dampfwolken über einem der Dome zu sehen sind. Der zweite Dom ist nicht im Bild, so dass nicht mit Sicherheit gesagt werden kann, ob auch dieser entsprechend aktiv ist. Die Bildunterschrift ist nicht klar formuliert, doch es könnte sich um den Norddom handeln. Der Südkrater wird von den Vulkanologen als Hauptkrater angesehen.

Darüber hinaus registrierten die Vulkanologen vom VSI eine Vielzahl verschiedener Erdbebensignale. In den letzten 24 Stunden wurden 137 starke Entgasungen registriert, sowie 90 Tremorphasen, 3 vulkanotektonische Beben und 2 hybride Erschütterungen. Zusammengenommen zeigen die Daten – und natürlich das Foto –, dass Magma aus der Tiefe aufsteigt, am Krater effusiv austritt und zumindest einen der Dome wachsen lässt.

Für gewöhnlich lösen wachsende Dome am Karangetang Steinschläge und Schuttlawinen glühenden Materials aus, das über die Vulkanhänge abgeht. Nicht selten entstehen pyroklastische Ströme, die Siedlungen am Fuß des Vulkans erreichen können und nicht nur Zerstörungen bedingen, sondern auch Menschenleben fordern.

Der Alarmstatus stehe auf „2“ (Gelb) und es gilt eine asymmetrische Sperrzone mit einem Radius von 1,5 Kilometern um die beiden Krater, die im Süden und Südwesten auf 2,5 Kilometer erweitert wurde. Hier liegt der Hang, über den die meisten Schuttlawinen und pyroklastischen Ströme abgehen.

Siau ist eine Vulkaninsel im Sangihe-Archipel, das nördlich von Sulawesi beginnt und bis zum Süden der Philippinen reicht. Die Region zwischen der Celebessee und der Molukkensee ist seismisch hochaktiv und wird praktisch täglich von mehreren mittelstarken Erdbeben erschüttert. Stärkere Erdbeben können hier Vulkanausbrüche triggern.

Planchón-Peteroa: Über 9100 Erdbeben innerhalb von 15 Tagen

Mehr als 9.100 Erdbeben am Vulkankomplex Planchón-Peteroa: Gemeinden bleiben in Alarmbereitschaft

Der chilenisch-argentinische Vulkankomplex Planchón-Peteroa befindet sich seit Mitte Juli auf einem erhöhten seismischen Aktivitätsniveau, weshalb weiterhin die Alarmstufe Gelb gilt. Der Grund hierfür liegt in einem massiven Schwarmbeben begründet, das am 10. Juli begann und bis heute anhält.

Wie das zuständige Observatorium SERNAGEOMIN in einem Bericht für den Beobachtungszeitraum 16. bis 31. August mitteilte, wurden in diesem Zeitraum insgesamt 9.178 seismische Signale vulkanischen Ursprungs registriert. Von diesen waren 116 vulkanotektonischer Natur. Das energiereichste Erdbeben erreichte eine Magnitude von 1,0 und ein Hypozentrum in 4 Kilometern Tiefe. Zusätzlich wurden 5.581 langperiodische Beben und 3.841 Tremorphasen verzeichnet, die mit der Fluiddynamik der Lava in Zusammenhang stehen.

Darüber hinaus wurden drei Phasen erhöhter Schwefeldioxid-Emissionen festgestellt sowie schwache thermische Signale, die parallel zu den Erdbeben auftauchten. Kameras rund um den Vulkan dokumentierten Entgasung, wobei am 23. August eine Dampfwolke bis zu 500 m über den Krater aufstieg. Auf Livecamaufnahmen sieht man aktuell aber nur Mini-Dampfwolken.

Laut dem jüngsten Bericht des Nationalen Dienstes für Geologie und Bergbau könnten die aktuellen Aktivitäten zu Ascheemissionen führen, vergleichbar mit denen, die zwischen 2018 und 2019 beobachtet wurden. Zudem werden mögliche Explosionen geringer bis mittlerer Stärke nicht ausgeschlossen, wobei ein Gefahrenradius von etwa zwei Kilometern um das Kraterzentrum prognostiziert wird.

Aufgrund dieser Entwicklungen gibt der Nationale Katastrophenschutz in den Gemeinden Molina, Curicó, Romeral und Teno in der Region Maule weiterhin Frühwarnungen aus. Bis auf weiteres bleibt eine vier Kilometer große Sperrzone um den Hauptkrater bestehen.

Der Vulkankomplex Planchón-Peteroa liegt in den zentralen Anden an der Grenze zwischen Chile und Argentinien, rund 200 km südlich von Santiago de Chile. Er besteht aus mehreren überlappenden Stratovulkanen, darunter Planchón, Peteroa und Azufre, die zusammen einen langgestreckten, komplexen Vulkankörper bilden. Das Vulkansystem fördert überwiegend andesitisch-dazitische Lava und weist zahlreiche Krater und Fumarolenfelder auf.

Die letzte größere Eruption fand zwischen 2010 und 2011 statt. Dabei kam es zu einer anhaltenden Ascheemission, die mehrere Monate anhielt und in Teilen Chiles und Argentiniens zu Ascheregen führte.

Santiaguito: Eruption verursacht pyrokalstischen Strom

Pyroklastischer Strom am Santiaguito – farbenfrohes Naturschauspiel mit potenziell tödlicher Wirkung

Am Domvulkan Santiaguito kam es am Mittwochmorgen um 08:56 Uhr (Lokalzeit) zu einer explosiven Eruption, die Vulkanasche bis auf eine Höhe von 4700 m förderte und nicht nur eine VONA-Warnung auslöste, sondern auch einen pyroklastischen Strom. Dieser ging auf der Nordostflanke ab und erreichte die Basis des Domes und floss in das Tal zum höheren Santa Maria, in dem sich oft Vulkanbeobachter aufhalten, die auf die inaktiven Dome neben dem aktiven Dom steigen, um die Eruption aus nächster Nähe zu beobachten. 

Die Besteigung der Nachbardome des aktiven Santiaguito-Doms ist natürlich genauso verboten wie der Abstieg vom Santa Maria in das Tal zwischen den beiden vulkanischen Manifestationen. Aus gutem Grund, wie sich heute zeigte. Wer in die Ausläufer eines pyroklastischen Stroms gerät, muss mit starken Verbrennungen rechnen, selbst wenn er das Unglück überleben sollte. Menschen, die in den Hauptstrom einer solchen Glutwolke aus heißen Gasen, Vulkanasche und größeren Blöcken geraten, haben in der Regel keine Überlebenschance. Nicht umsonst zählen pyroklastische Ströme zu dem Gefährlichsten, was ein Vulkan hervorbringen kann. In Bezug auf das Gefahrenpotenzial folgen dichtauf Lahare, vor denen am Santiaguito aktuell ebenfalls gewarnt wird. Die Schlammströme entstehen, wenn sich abgelagerte Vulkanasche mit Regenwasser vermischt und dadurch am Hang mobilisiert wird.

Dem pyroklastischen Strom wohnte durchaus eine gewisse Ästhetik inne, denn es handelte sich um ein farbenfrohes Ereignis: Während die durch die Explosion frisch geförderte Eruptionswolke schwarzgrauer Färbung war, durchmischt mit weißem Wasserdampf, bestach der pyroklastische Strom durch ein intensives Ocker, das davon zeugt, dass es infolge der Explosion zum Kollaps und zur Fragmentation eines älteren Lavapakets kam, aus dem der pyroklastische Dichtestrom hervorging.

Die Vulkanologen von INSIVUMEH sprechen in ihren täglichen Berichten Warnungen zu den Vulkangefahren aus und betonen insbesondere, dass Schuttlawinen, pyroklastische Ströme und Lahare entstehen könnten. Zudem beschreiben sie die explosive Tätigkeit, die als schwach bis mittelstark eingestuft wird und mehrmals täglich Eruptionen erzeugt, die Aschewolken bis zu 800 m über Domhöhe aufsteigen lassen.

Asien: Extremer Niederschlag verursacht Flutkatastrophen

Extremregen verursachte Kontinent übergreifende Flutkatastrophen –  Südostasien am stärksten betroffen

In den letzten Tagen wurde in den Medien viel über die Flutkatastrophen in Italien und Bosnien-Herzegowina berichtet, wo starke Unwetter mit extremen Niederschlägen für Überflutungen sorgten. In Bosnien-Herzegowina fielen dabei innerhalb weniger Stunden bis zu 300 mm Niederschlag. Doch auch in anderen Erdteilen kommt es aktuell zu extremen Regenmengen, die sich zudem nicht nur in kurzen Unwettern entladen, sondern teils tagelang anhalten. Besonders betroffen sind die Teile Asiens, in denen Monsunzeit ist. Der Monsun trifft dabei auf atmosphärische Störungen, die die Regenzeit verstärken.

In den letzten Tagen gab es von Indien über Indonesien bis nach Japan außergewöhnlich heftige Regenfälle, die Straßen überfluteten, Häuser zerstörten und den Alltag von Millionen Menschen lahmlegten. Meteorologen sehen darin kein Zufallsereignis, sondern ein Symptom der sich verändernden Klimabedingungen.

Auf der indonesischen Ferieninsel Bali standen in den vergangenen Tagen ganze Stadtviertel unter Wasser. Die Hauptstadt Denpasar sowie die Touristenzentren Canggu und Ubud waren besonders betroffen. Schlauchboote mussten eingesetzt werden, um Touristen aus ihren Hotels zu evakuieren. Nach Angaben der Behörden kamen allein auf Bali mindestens 16 Menschen ums Leben, wobei die Opferzahlen weiter steigen. Zahlreiche Einwohner mussten ihre Häuser verlassen und in Notunterkünfte umsiedeln. Auch die weiter östlich gelegene Insel Flores verzeichnete schwere Fluten mit mehreren Toten und Vermissten. Erst allmählich gehen die Wassermassen zurück, während Einsatzkräfte Trümmer beseitigen und Wasser aus den überfluteten Gebieten abpumpen. Zurück bleiben zerstörte Häuser und on den Wassermassen mobilisierte Schutt- und Müllmassen.

Ähnlich dramatisch war die Lage in Indien, wo der Monsun in diesem Jahr besonders heftig ausgefallen ist. In den Bundesstaaten Punjab, Haryana und Rajasthan fiel innerhalb von 24 Stunden mehr als das Zehnfache der üblichen Niederschlagsmenge. Punjab erlebte die schlimmsten Überschwemmungen seit 1988. Flüsse traten über die Ufer, Dörfer wurden weggespült, und in mehreren Regionen kam es zu Erdrutschen. Allein im Nordwesten Indiens lagen die Niederschläge zwischen Ende August und Anfang September 180 Prozent über dem Durchschnitt.

Auch Japan blieb nicht verschont: Ein plötzlicher Wolkenbruch in Tokio setzte Straßen unter Wasser und führte zu einem teilweisen Stillstand des öffentlichen Lebens. Der Flughafen Haneda musste wegen Blitzeinschlägen den Betrieb zeitweise einstellen, der Hochgeschwindigkeitszug Shinkansen und mehrere Regionalstrecken standen still. Mehr als 7.000 Haushalte waren vorübergehend ohne Strom.

Ursachen von Flutkatastrophen: ein veränderter Wasserkreislauf

Wissenschaftler machen ein Zusammenspiel aus Klimawandel, atmosphärischen Strömungen und regionalen Gegebenheiten für die Häufung dieser Ereignisse verantwortlich. Ein zentraler Faktor ist der globale Temperaturanstieg: Wärmere Luft kann mehr Wasserdampf aufnehmen – rund sieben Prozent mehr pro ein Grad Celsius. Das bedeutet, dass sich bei Regenereignissen größere Wassermengen entladen, was zu extremen Niederschlägen führt.

Hinzu kommt, dass der Monsun selbst immer unregelmäßiger verläuft. Früher verteilten sich die Regenfälle gleichmäßig über die vier Monsunmonate Juni bis September. Heute kommt es nach langen Trockenphasen immer häufiger zu sintflutartigen Regenfällen innerhalb weniger Stunden. Besonders in Bergregionen prallen feuchte Luftmassen auf Gebirgshänge und entladen sich als Wolkenbrüche. Die Folgen sind reißende Sturzfluten und verheerende Erdrutsche, wie sie zuletzt in den Himalaya-Staaten Uttarakhand und Himachal Pradesh beobachtet wurden.

Eine weitere Rolle spielen die Jetstreams. Hierbei handelt es sich um starke Windbänder in der oberen Atmosphäre, die auf der Nordhalbkugel von West nach Ost strömen. Sie sind durch den Klimawandel instabiler geworden und mäandrieren stärker, als es früher der Fall gewesen ist. Dadurch bleiben Regengebiete länger über einer Region liegen, was die Regenmengen zusätzlich erhöht. In Teilen Indiens führte zudem das Zusammentreffen des Monsuns mit Tiefdruckgebieten aus dem Mittelmeerraum zu einer gefährlichen Wetterlage, die über Tage anhielt. Auch die Tiefdruckrinne, die zunächst für die Unwetter in Italien und Bosnien-Herzegowina verantwortlich war, könnte in einigen Tagen das Wetter in Indien beeinflussen. Die Tiefdruckrinne ihrerseits wurde vom Ex-Hurrikan Erin beeinflusst, der zuvor die Ostküste der USA heimgesucht hatte. Erstaunlich, wie auf der Erde vieles interkontinental zusammenhängt.

Experten warnen, dass solche Ereignisse in den kommenden Jahren häufiger und intensiver auftreten werden. Besonders gefährdet sind dicht besiedelte Regionen mit unzureichender Infrastruktur und geringer Wasserrückhaltefähigkeit. In Städten wie Tokio, Mumbai oder Jakarta verstärken versiegelte Flächen die Überschwemmungen, weil das Wasser nicht versickern kann.

Die aktuellen Flutkatastrophen sind damit nicht nur lokale Tragödien, sondern ein Vorgeschmack auf die Herausforderungen, die der Klimawandel für Asien bereithält. Anpassungsstrategien wie verbesserte Frühwarnsysteme, widerstandsfähigere Infrastruktur und eine kluge Stadtplanung werden entscheidend sein, um die Folgen künftiger Extremregenfälle abzumildern.

Campi Flegrei: Studie zur Erhitzung des Grundwasserleiters

Neue Studie zur Erhitzung des Grundwasserleiters der Campi Flegrei – Magmatisch bedingt

Heute wurde vom INGV mitgeteilt, dass eine neue Studie veröffentlicht wurde, die im Rahmen einer Kooperation des INGV mit dem Institut für Geowissenschaften und Georessourcen des Nationalen Forschungsrats in Pisa und der Firma Steam srl, die auf geothermische Anlagen spezialisiert ist, entstanden ist. Die Studie wurde in der Fachzeitschrift Solid Earth veröffentlicht und beschäftigt sich mit den magmatischen Gasen der Fumarolen im Bereich der Solfatara und Pisciarelli.

Pisciarell-Fumarole und Schlammtopf

Mit Hilfe von Gasanalysen und anderen geowissenschaftlichen Daten gelang es, ein Modell des magmatisch-hydrothermalen Systems der Solfatara zu entwickeln und einen Erklärungsansatz, warum sich das Wasser eines Grundwasserleiters in 2,7 bis 4,0 Kilometern Tiefe erhitzt, was letztendlich zum Druckaufbau des Systems führt.

Die Forscher analysierten Daten von 4 Jahrzehnten, die mithilfe speziell entwickelter Geothermometer und Geobarometer erfasst wurden. Mit den Instrumenten wurden Temperatur und Druck von drei Grundwasserleitern in unterschiedlichen Tiefen der Phlegräischen Felder gemessen. Die dabei gewonnenen Daten wurden mit geowissenschaftlichen Informationen aus Oberflächenuntersuchungen und geothermischen Explorationsbohrungen aus den 1970er- und 1980er-Jahren verglichen, die bis in Tiefen von rund drei Kilometern reichten.

Die Ergebnisse bestätigen, dass die Erwärmung und Druckzunahme im Grundwasserleiter die direkte Ursache der aktuellen Bodenhebung sind. Diese Prozesse werden durch die magmatische Entgasung gesteuert, was bereits durch Schwankungen der Schwefelisotope in den fumarolischen Fluiden der Solfatara nachgewiesen wurde. Einen Nachweis von Magma in Tiefen oberhalb von 4 Kilometern erbrachte auch diese Studie nicht. Dennoch ist klar, dass es in größerer Tiefe eine Magmenakkumulation gibt.

Bei steigendem Druck im Grundwasserleiter besteht das Risiko hydrothermaler oder phreatischer Explosionen, wie wir sie im Juli 2024 im Biscuit-Basin des Yellowstone-Nationalparks sahen. Diese könnten durch die Verdampfung von Wasser und die plötzliche Ausdehnung des Dampfes ausgelöst werden und zum Aufbrechen des überlagernden Gesteins führen. Solche phreatischen Eruptionen entstehen, ohne dass es zu einem direkten Kontakt von Magma mit Grundwasser kommt. Es reicht eine starke Hitzequelle in der Tiefe, die das Gestein überhitzt und Wasser explosionsartig ausdehnen lässt, wenn es mit diesen heißen Gesteinen in Verbindung kommt.

Laut der Gefahreneinschätzung der Studienautoren könnte eine hydrothermale Explosion die Bildung heißer Schlammströme und Geröllmassen verursachen, die sich rasch ausbreiten und entlang der Geländevertiefungen bis zur Küste vordringen – ein Szenario, das in der Vergangenheit bereits dokumentiert wurde. Voraussetzung ist das Überschreiten der mechanischen Widerstandsfähigkeit der Deckgesteine, deren Festigkeit durch die zunehmende seismische Aktivität in der Region weiter abnimmt.

Die Autoren betonen, dass es sehr schwierig ist phreatische Eruptionen oder hydrothermale Explosionen vorherzusagen. Die Gefahr wächst, je länger die aktuelle Krise anhält. (Quelle: cnr.it)

Taal generiert kleine phreatische Eruption

Keine phreatische Eruption am Taal – Kann noch nicht alles gewesen sein

Heute manifestierte sich eine erste kleine phreatische Eruption aus dem Kratersee von Volcano Island in der Taal-Caldera. Die Eruption bestand eigentlich aus einer einzelnen großen Gasblase, die das Wasser kurz aufwallen ließ und einen kleinen Sprudel erzeugte, so wie es der Wallenborn in der Vulkaneifel macht. Da seit Wochen der Druck im Hydrothermalsystem des Vulkans steigt und man mit einer phreatischen Eruption gerechnet hat, kann dieser eine Brubbel heute noch nicht alles gewesen sein.

Dampferuption Taal

Die geophysikalischen Daten vor der Eruption waren von einem langanhaltenden Tremor geprägt, der bereits gestern Morgen eingesetzt hat. Außerdem wurden 5 normal lange Tremorphasen und 9 vulkanotektonische Erdbeben festgestellt. Der Schwefeldioxid-Ausstoß verringerte sich von über 3300 Tonnen am Tag auf 1749 Tonnen am Tag. Das ist ein Indiz dafür, dass es zu einer teilweisen Blockade des Fördersystems gekommen ist, was den Druckaufbau beschleunigt und wahrscheinlich auch den Tremor verursacht. Sollten die Daten morgen ähnlich aussehen, dann hat die phreatische Eruption heute keine nachhaltige Druckentlastung gebracht und man muss mit weiteren Ereignissen rechnen.

Beim Taal handelt es sich um einen großen Calderavulkan auf der Philippineninsel Luzon. Dort liegt auch der Mayon, der gestern ca. 600 Tonnen Schwefeldioxid ausstieß und ein Steinschlagereignis erzeugte. Mit dem Fernrohr konnten die Vulkanologen schwache Rotglut am Lavadom ausmachen, der wieder stärker zu wachsen scheint, als es in den vergangenen Monaten der Fall gewesen war.

Ein weiterer aktiver Vulkan der Philippinen ist der Kanlaon auf Negros, der erst gestern wieder eine Ascheemission erzeugt hat. Sie stieg bis auf eine Höhe von 3000 m auf und driftete in Richtung Nordwesten. Die Eruption hielt 20 Minuten an. Anschließend stieg Dampf bis zu 600 m über Kraterhöhe auf. Der Schwefeldioxidausstoß lag bei 1134 Tonnen am Tag.